期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China
1
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-RF) machine learning multi-source indicator optimal lead time Henan Province China
下载PDF
Assimilation of temporal-spatial leaf area index into the CERES-Wheat model with ensemble Kalman filter and uncertainty assessment for improving winter wheat yield estimation 被引量:5
2
作者 LI He JIANG Zhi-wei +3 位作者 CHEN Zhong-xin REN Jian-qiang LIU Bin Hasituya 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第10期2283-2299,共17页
To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) v... To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) values. The performances of the calibrated crop environment resource synthesis for wheat (CERES-Wheat) model for two different assimilation scenarios were compared by employing ensemble Kalman filter (EnKF)-based strategies. The uncertainty factors of the crop model data assimilation was analyzed by considering the observation errors, assimilation stages and temporal-spatial scales. Overalll the results indicated a better yield estimate performance when the EnKF-based strategy was used to comprehen- sively consider several factors in the initial conditions and observations. When using this strategy, an adjusted coefficients of determination (R2) of 0.84, a root mean square error (RMSE) of 323 kg ha-1, and a relative errors (RE) of 4.15% were obtained at the field plot scale and an R2 of 0.81, an RMSE of 362 kg ha-1, and an RE of 4.52% were obtained at the pixel scale of 30 mx30 m. With increasing observation errors, the accuracy of the yield estimates obviously decreased, but an acceptable estimate was observed when the observation errors were within 20%. Winter wheat yield estimates could be improved significantly by assimilating observations from the middle to the end of the crop growing seasons. With decreasing assimilation frequency and pixel resolution, the accuracy of the crop yield estimates decreased; however, the computation time decreased. It is important to consider reasonable temporal-spatial scales and assimilation stages to obtain tradeoffs between accuracy and computation time, especially in operational systems used for regional crop yield estimates. 展开更多
关键词 winter wheat yield estimates crop model data assimilation ensemble Kalman filter UNCERTAINTY leaf area index
下载PDF
Comparison on Winter Wheat Yield Estimating Models Based on Radarsat-2 and HJ Satellite in Huaihe River Region 被引量:1
3
作者 范伟 陈磊 +2 位作者 陈娟 闫洪凯 刘韬 《Agricultural Science & Technology》 CAS 2016年第4期1019-1023,共5页
The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model... The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model. With Shou County and Huaiyuan County of Anhui Province as the experimental fields of winter wheat producing areas, the linear winter wheat yield estimating models were established by adopting backscattering coefficient and Normalized Difference Vegetation Index(NDVI) based on images from the synthetic aperture radar(SAR)—RDARSAT-2 and HJ satellite photographed in mid-April and early May, 2014, and then comparisons were conducted on the accuracy of the yield estimating models. The accuracies of the yield estimating models established using co-polarized(HH) and cross-polarized(HV) modes of SAR in Jiangou Town, Shou County were 68.37% and 74.01%, respectively, while the accuracies in Longkang Town, Huaiyuan County were 63.10%and 69.10%, respectively. Accuracies of yield estimating models established by HJ satellite data were 69.52% and 66.43% in Shou County and Huaiyuan County, respectively. Accuracies of winter yield estimating model based on HJ satellite data and that based on SAR were closed, and the yield difference of winter wheat in the lodging region was analyzed in detail. The model results laid the foundation and accumulated experience for the verification, parameters correction and promotion of the winter wheat yield estimating model. 展开更多
关键词 Winter wheat yield estimating model Synthetic aperture radar RADARSAT-2 HJ satellite Model comparison
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部