Compared to the conventional phase change materials,the new phase change material Ta-Sb2Te3 has the advantages of excellent data retention and good material stability.In this letter,the etching characteristics of Ta-S...Compared to the conventional phase change materials,the new phase change material Ta-Sb2Te3 has the advantages of excellent data retention and good material stability.In this letter,the etching characteristics of Ta-Sb2Te3 were studied by using CF4/Ar.The results showed that when CF4/Ar=25/25,the etching power was 600 W and the etching pressure was 2.5 Pa,the etching speed was up to 61 nm/min.The etching pattern of Ta-Sb2Te3 film had a smooth side wall and good perpendicularity(close to 90°),smooth surface of the etching(RMS was 0.51nm),and the etching uniformity was fine.Furthermore,the mechanism of this etching process was analyzed by X-ray photoelectron spectroscopy(XPS).The main damage mechanism of ICP etching in CF4/Ar was studied by X-ray diffraction(XRD).展开更多
The comparison of domestic and foreign studies has been utilized to extensively employ junction termination extension(JTE)structures for power devices.However,achieving a gradual doping concentration change in the lat...The comparison of domestic and foreign studies has been utilized to extensively employ junction termination extension(JTE)structures for power devices.However,achieving a gradual doping concentration change in the lateral direction is difficult for SiC devices since the diffusion constants of the implanted aluminum ions in SiC are much less than silicon.Many previously reported studies adopted many new structures to solve this problem.Additionally,the JTE structure is strongly sensitive to the ion implantation dose.Thus,GA-JTE,double-zone etched JTE structures,and SM-JTE with modulation spacing were reported to overcome the above shortcomings of the JTE structure and effectively increase the breakdown voltage.They provided a theoretical basis for fabricating terminal structures of 4H-SiC PiN diodes.This paper summarized the effects of different terminal structures on the electrical properties of SiC devices at home and abroad.Presently,the continuous development and breakthrough of terminal technology have significantly improved the breakdown voltage and terminal efficiency of 4H-SiC PiN power diodes.展开更多
Steady high-flux helium(He)plasma with energy ranging from 50 eV to 90 eV is used to fabricate a fiber-form nanostructure called fuzz on a polycrystalline molybdenum(Mo)surface.Enhanced hydrogen(H)pulsed plasma in a w...Steady high-flux helium(He)plasma with energy ranging from 50 eV to 90 eV is used to fabricate a fiber-form nanostructure called fuzz on a polycrystalline molybdenum(Mo)surface.Enhanced hydrogen(H)pulsed plasma in a wide power density range of 12 MW/m^(2)-35 MW/m^(2)is subsequently used to bombard the fuzzy Mo,thereby simulating the damage of edge localized mode(ELM)to fuzz.The comparisons of surface morphologies,crystalline structures,and optical reflectivity between the original Mo and the Mo treated with various He^(+)energy and transient power densities are performed.With the increase of He ion energy,the Mo nano-fuzz evolved density is enlarged due to the decrease of filament diameter and optical reflectivity.The fuzz-enhanced He release should be the consequence of crystalline growth and the lattice shrinkage inside the Mo-irradiated layers(^(2)00 nm).The fuzz induced by lower energy experiences more severe melting damage and dust release under the condition of the identical transient H plasma-bombardment.The H and He are less likely to be trapped due to aggravated melting evidenced by the enhanced crystalline size and distinct lattice shrinkage.As the transient power density rises,the thermal effect is enhanced,thereby causing the fuzz melting loss to aggravate and finally to completely disappear when the power density exceeds 21 MW/m^(2).Irreversible grain expansion results in huge tensile stress,leading to the observable brittle cracking.The effects of transient thermal load and He ion energy play a crucial role in etching Mo fuzz during ELM transient events.展开更多
Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated...Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated to generate the discharge current and ion beam current extracted from the plasma. The various plasmas described include a DC glow discharge plasma, an arc discharge plasma and a radio frequency discharge plasma.展开更多
Various material design strategies have been developed to enhance photocatalytic performance of TiO_(2).However,no report is available on applications of the photopiezocatalysis strategy on TiO_(2)due to its lack of p...Various material design strategies have been developed to enhance photocatalytic performance of TiO_(2).However,no report is available on applications of the photopiezocatalysis strategy on TiO_(2)due to its lack of piezoelectricity.Here we developed a low-temperature molten salt etching process to create rutile TiO_(2)nanoparticles by etching[MgO_(6)]octahedrons away from MgTiO_(3)by molten NH_(4)Cl,during which a lattice distortion occurred in TiO_(2).The lattice distortion broke the structure symmetry of rutile TiO_(2)and subsequently endowed these rutile TiO_(2)nanoparticles with an unusual piezoelectric response with the maximum effective piezoelectric coefficient(d_(33))of~41.6 pm/V,which had not previously been found in TiO_(2)photocatalysts.Thus,the photopiezocatalysis strategy was applied for the first time to enhance the photocatalytic performance of these TiO_(2)nanoparticles.The creation of lattice distortion to induce piezoelectricity could be extended to other photocatalysts that the photopiezocatalysis strategy has not been applied to and may generate novel functionalities for various technical applications.展开更多
Endpoint detection (EPD) is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done on the right way. It is truly a crucial part of supplying repea...Endpoint detection (EPD) is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done on the right way. It is truly a crucial part of supplying repeatable effects in every single wafer. When the film to be etched has been completely erased, the endpoint is reached. In order to ensure the desired device performance on the produced integrated circuit, many sensors are used to detect the endpoint, such as the optical, electrical, acoustical/vibrational, thermal, and frictional. But, except the optical sensor, the other ones show their weaknesses due to the environmental conditions which affect the exactness of reaching endpoint. Unfortunately, some exposed area to the film to be etched is very low (〈0.5%), reflecting low signal and showing the incapacity of the traditional endpoint detection method to determine the wind-up of the etch process. This work has provided a means to improve the endpoint detection sensitivity by collecting a huge numbers of full spectral data containing 1201 spectra for each run, then a new unsophisticated algorithm is proposed to select the important endpoint traces named shift endpoint trace selection (SETS). Then, a sensitivity analysis of linear methods named principal component analysis (PCA) and factor analysis (FA), and the nonlinear method called wavelet analysis (WA) for both approximation and details will be studied to compare performances of the methods mentioned above. The signal to noise ratio (SNR) is not only computed based on the main etch (ME) period but also the over etch (OE) period. Moreover, a new unused statistic for EPD, coefficient of variation (CV), is proposed to reach the endpoint in plasma etches process.展开更多
基金This work was financially supported by the Natural Science Foundation of China(61874129)the National Key Research and Development Program of China(2017YFB0405601).
文摘Compared to the conventional phase change materials,the new phase change material Ta-Sb2Te3 has the advantages of excellent data retention and good material stability.In this letter,the etching characteristics of Ta-Sb2Te3 were studied by using CF4/Ar.The results showed that when CF4/Ar=25/25,the etching power was 600 W and the etching pressure was 2.5 Pa,the etching speed was up to 61 nm/min.The etching pattern of Ta-Sb2Te3 film had a smooth side wall and good perpendicularity(close to 90°),smooth surface of the etching(RMS was 0.51nm),and the etching uniformity was fine.Furthermore,the mechanism of this etching process was analyzed by X-ray photoelectron spectroscopy(XPS).The main damage mechanism of ICP etching in CF4/Ar was studied by X-ray diffraction(XRD).
基金financially supported by the Scientific and Technology Project of State Grid Corporation of China,Research on Dry Etching Forming Technology of Silicon Carbide Device,Project No.5500-202158437A-0-0-00.
文摘The comparison of domestic and foreign studies has been utilized to extensively employ junction termination extension(JTE)structures for power devices.However,achieving a gradual doping concentration change in the lateral direction is difficult for SiC devices since the diffusion constants of the implanted aluminum ions in SiC are much less than silicon.Many previously reported studies adopted many new structures to solve this problem.Additionally,the JTE structure is strongly sensitive to the ion implantation dose.Thus,GA-JTE,double-zone etched JTE structures,and SM-JTE with modulation spacing were reported to overcome the above shortcomings of the JTE structure and effectively increase the breakdown voltage.They provided a theoretical basis for fabricating terminal structures of 4H-SiC PiN diodes.This paper summarized the effects of different terminal structures on the electrical properties of SiC devices at home and abroad.Presently,the continuous development and breakthrough of terminal technology have significantly improved the breakdown voltage and terminal efficiency of 4H-SiC PiN power diodes.
基金Project supported by the Sichuan Provincial Science and Technology Program,China(Grant Nos.2021YFSY0015and 2021YJ0510)the China Postdoctoral Science Foundation(Grant No.2019M663487)the National Natural Science Foundation of China(Grant No.11905151)。
文摘Steady high-flux helium(He)plasma with energy ranging from 50 eV to 90 eV is used to fabricate a fiber-form nanostructure called fuzz on a polycrystalline molybdenum(Mo)surface.Enhanced hydrogen(H)pulsed plasma in a wide power density range of 12 MW/m^(2)-35 MW/m^(2)is subsequently used to bombard the fuzzy Mo,thereby simulating the damage of edge localized mode(ELM)to fuzz.The comparisons of surface morphologies,crystalline structures,and optical reflectivity between the original Mo and the Mo treated with various He^(+)energy and transient power densities are performed.With the increase of He ion energy,the Mo nano-fuzz evolved density is enlarged due to the decrease of filament diameter and optical reflectivity.The fuzz-enhanced He release should be the consequence of crystalline growth and the lattice shrinkage inside the Mo-irradiated layers(^(2)00 nm).The fuzz induced by lower energy experiences more severe melting damage and dust release under the condition of the identical transient H plasma-bombardment.The H and He are less likely to be trapped due to aggravated melting evidenced by the enhanced crystalline size and distinct lattice shrinkage.As the transient power density rises,the thermal effect is enhanced,thereby causing the fuzz melting loss to aggravate and finally to completely disappear when the power density exceeds 21 MW/m^(2).Irreversible grain expansion results in huge tensile stress,leading to the observable brittle cracking.The effects of transient thermal load and He ion energy play a crucial role in etching Mo fuzz during ELM transient events.
文摘Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated to generate the discharge current and ion beam current extracted from the plasma. The various plasmas described include a DC glow discharge plasma, an arc discharge plasma and a radio frequency discharge plasma.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.52272125 and 51902271)the Fundamental Research Funds for the Central Universities(Grant Nos.2682021CX116,2682020CX07,and 2682020CX08)Sichuan Science and Technology Program(Grant Nos.2020YJ0259,2020YJ0072,and 2021YFH0163).We would like to thank Analysis and Testing Center of Southwest Jiaotong University for the assistance on material characterization.
文摘Various material design strategies have been developed to enhance photocatalytic performance of TiO_(2).However,no report is available on applications of the photopiezocatalysis strategy on TiO_(2)due to its lack of piezoelectricity.Here we developed a low-temperature molten salt etching process to create rutile TiO_(2)nanoparticles by etching[MgO_(6)]octahedrons away from MgTiO_(3)by molten NH_(4)Cl,during which a lattice distortion occurred in TiO_(2).The lattice distortion broke the structure symmetry of rutile TiO_(2)and subsequently endowed these rutile TiO_(2)nanoparticles with an unusual piezoelectric response with the maximum effective piezoelectric coefficient(d_(33))of~41.6 pm/V,which had not previously been found in TiO_(2)photocatalysts.Thus,the photopiezocatalysis strategy was applied for the first time to enhance the photocatalytic performance of these TiO_(2)nanoparticles.The creation of lattice distortion to induce piezoelectricity could be extended to other photocatalysts that the photopiezocatalysis strategy has not been applied to and may generate novel functionalities for various technical applications.
文摘Endpoint detection (EPD) is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done on the right way. It is truly a crucial part of supplying repeatable effects in every single wafer. When the film to be etched has been completely erased, the endpoint is reached. In order to ensure the desired device performance on the produced integrated circuit, many sensors are used to detect the endpoint, such as the optical, electrical, acoustical/vibrational, thermal, and frictional. But, except the optical sensor, the other ones show their weaknesses due to the environmental conditions which affect the exactness of reaching endpoint. Unfortunately, some exposed area to the film to be etched is very low (〈0.5%), reflecting low signal and showing the incapacity of the traditional endpoint detection method to determine the wind-up of the etch process. This work has provided a means to improve the endpoint detection sensitivity by collecting a huge numbers of full spectral data containing 1201 spectra for each run, then a new unsophisticated algorithm is proposed to select the important endpoint traces named shift endpoint trace selection (SETS). Then, a sensitivity analysis of linear methods named principal component analysis (PCA) and factor analysis (FA), and the nonlinear method called wavelet analysis (WA) for both approximation and details will be studied to compare performances of the methods mentioned above. The signal to noise ratio (SNR) is not only computed based on the main etch (ME) period but also the over etch (OE) period. Moreover, a new unused statistic for EPD, coefficient of variation (CV), is proposed to reach the endpoint in plasma etches process.