We isolated a novel laminarinase ULam111 from Flavobacterium sp. strain UMI-01. Purified ULam111 showed degradation activity against laminarin with the specific activity of 224 ± 18 U/mg at 30°C and pH 6.0. ...We isolated a novel laminarinase ULam111 from Flavobacterium sp. strain UMI-01. Purified ULam111 showed degradation activity against laminarin with the specific activity of 224 ± 18 U/mg at 30°C and pH 6.0. Its optimum temperature was 50°C, and degradation activities against laminarin were observed at 4°C - 80°C. With a laminarin degradation system, we investigated the preparation and properties of immobilized ULam111 with the use of the 11 types of carriers. The high activity recoveries of immobilized ULam111 were as follows: 19.4% for IB-S60P carrier beads (the non-ionic type), 15.6% for IB-S60S carrier beads (the non-ionic type), 11.9% for IB-150P carrier beads (the covalent type), and 7.1% for IB-C435 carrier beads (the cationic type). With the repeated use of immobilized ULam111, the enzyme activities immobilized on IB-S60S and those on IB-S60P remained at 40% and 30% respectively after the sixth trial. We selected IB-S60S as suitable beads for enzyme immobilization, and we attempted to construct a reactor system with ULam111 immobilized on IB-S60S beads. In this system, 1.2 - 1.9 g/L glucose was repeatedly produced from 30 mg/mL laminarin solutions after 20 hr when the reactor operation was repeated 10 times. We examined ethanol fermentation from the saccharified solutions with a marine-derived yeast (Saccharomyces cerevisiae C-19), and 0.51 - 0.58 g/L bioethanol was produced from the saccharified solution that contained 1.71 - 1.86 g/L of glucose.展开更多
Nonaqueous amine-based system is an attractive solution to overcome high-energy-intensive CO_(2) capture process using the conventional aqueous amines.Advanced nonaqueous absorbent of 2-(butylamino)ethanol(BAE)with 2-...Nonaqueous amine-based system is an attractive solution to overcome high-energy-intensive CO_(2) capture process using the conventional aqueous amines.Advanced nonaqueous absorbent of 2-(butylamino)ethanol(BAE)with 2-butoxyethanol(2-BE)has been recently proposed for low-energyconsumption CO_(2) capture.In this work,Henry’s law constants of CO_(2) in the BAE/2-BE blend were obtained by N_(2)O/CO_(2) analogy,and correlated in the temperature range of(283–333)K.Vapor-liquid equilibrium(VLE)data for the BAE+CO_(2)+2-BE system at 65.4%(mass)BAE were also determined in a stirred equilibrium cell at temperatures of(313–393)K and CO_(2) partial pressures up to 275 kPa.A single apparent equilibrium constant KCO_(2);app was proposed for this system and correlated as a function of temperature,carbonated degree of amine and CO_(2) loading.Solubility data were well represented by the modified Kent-Eisenberg model with an average absolute relative deviation(AARD)of 13%.展开更多
Objective To investigate the potential therapeutic targets and pharmacological mechanism of(-)-epigallocatechin-3-gallate(EGCG)based on network pharmacology and experimental verification.METHODS The druggability of EG...Objective To investigate the potential therapeutic targets and pharmacological mechanism of(-)-epigallocatechin-3-gallate(EGCG)based on network pharmacology and experimental verification.METHODS The druggability of EGCG was measured by the traditional Chinese medicine systems pharmacology(TCMSP)server,and potential targets of EGCG were identified by Pharm Mapper and Drug Repositioning and Adverse drug Reaction via Chemical-Protein Interactome(DRAR-CPI).The potential targets were imported into GeneMANIA database to obtain the protein-protein direct interaction network,and target physical interaction,co-expression,prediction,genetic interaction,and shared protein domains.The biological process,molecular functions,cellular components and KEGG signaling pathways of potential targets were analyzed using DAVID database.For further study,ethanol was used to establish a model of endothelial injury in vitro.The cell viability was assayed by MTT method,the cellular apoptosis was stained by Annexin V/PI,and the expression levels of Bcl-2,Bax and cleved-caspase-3 were tested by Western blotting.Then,JC-1 and nuclear translocation of NF-κB experiments were used to study the mitochondrial membrane potential and nuclear translocation.RESULTS The oral availability of EGCG was 55.09%(≥30%)and drug-like index was 0.77(≥0.18),which were considered pharmacokinetically active.17 potential targetable proteins of EGCG were predicted by Pharm Mapper and DRAR-CPI.Further research showed that 68.13%displayed similar co-expression characteristics,26.11%physical interactions,and 2.74%shared the same protein domain.The depth network analysis results showed that the biofunctions of EGCG were mainly by regulating glutathione derivative biosynthetic process,glutathione metabolic process,nitrogen compound metabolic process etc..via drug binding,catalytic activity,glutathione transferase activity,anion binding etc..in sarcoplasmic reticulum,spindle pole,microtubule cytoskeleton and cytoplasm.KEGG enrichment analysis showed that Glutathione metabolism,IL^(-1)7 signaling pathway,EGFR tyrosine kinase inhibitor resistance,PI3K-Akt signaling pathway and other pathways were involves in the biofunction of EGCG.The above analyses indicated that EGCG exerts its biofunction through antioxidant and anti-inflammatory mechanisms.The experimental results showed that ethanol 20.0 mmol·L^(-1) decreased cell viability,Bcl-2 expression,and increased cell apoptosis,the intracellular ROS,as well as the expression of Bax and cleaved-caspase-3 of human endothelial cells.However,treatment of the cells with EGCG can significantly alleviate ethanol induced endothelial cells injury.Further study showed that EGCG significantly alleviates ethanol induced mitochondrial depolarization and nuclear translocation of NF-κB.CONCLUSIONS EGCG exerts pharmacological efficacies on ethanol induced endothelial cell injury through multi-target,multi-function and multi-pathway mode.Protective effect of EGCG on ethanol induced cell injury was mainly through alteration of mitochondrial function and NF-κB translocation.Therefore,EGCG have great potential in protecting against endothelial dysfunction of the persons who are chronically abuse of ethanol.This study also provides a new understanding of EGCG in clinical application on cardiovascular and cerebrovascular diseases.展开更多
A simple and specific gas chromatographic method developed and validated for the determination of 2-(2-chloroethoxy) ethanol in Quetiapine Fumarate. The method is carried out with a flame ionization detector and DB-FF...A simple and specific gas chromatographic method developed and validated for the determination of 2-(2-chloroethoxy) ethanol in Quetiapine Fumarate. The method is carried out with a flame ionization detector and DB-FFAP capillary column. The linearity was established over a range of 40-150 μg ml-1 and correlation coefficient is more than 0.999.展开更多
Focusing our DFT calculations on the carboxylic acid drugs such as ibuprofen drug (IBF), it has been concluded that the anions of these types of drugs have the spontaneous electron donor character to all the carcinoge...Focusing our DFT calculations on the carboxylic acid drugs such as ibuprofen drug (IBF), it has been concluded that the anions of these types of drugs have the spontaneous electron donor character to all the carcinogenic cells of electron deficiency in their nuclei. Due to the spontaneity of electron transfer of anions, it has been found clinically that ibuprofen drug cures cancers of colon, protostate, lung and breast. The breast cancer treatment of Matthew Gdovin group in two hours by injection of ethanolic solution of nitrobenzaldehyde in the breast tumor in presence of uv-irradiation has been studied from TD-DFT point of view;the excited states of these molecules in presence of uv-irradiation act as electron donors to the cancerous cells to compensate the electron deficiency. Finally, it has been concluded that the electron transfer is the main cause of the breast cancer treatment which is the most aggressive type of cancers and is one of the hardest to treat.展开更多
A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the acti...A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.展开更多
Evidence has accumulated to suggest an important role of ethanol and/or its metabolites in the pathogenesis of alcohol-related liver disease. In this review, the fibrogenic effects of ethanol and its metabolites on he...Evidence has accumulated to suggest an important role of ethanol and/or its metabolites in the pathogenesis of alcohol-related liver disease. In this review, the fibrogenic effects of ethanol and its metabolites on hepatic stellate cells (HSCs) are discussed. In brief, ethanol interferes with retinoid metabolism and its signaling, induces the release of fibrogenic cytokines such as transforming growth factor β-1 (TGFβ-1) from HSCs, up-regulates the gene expression of collagen I and enhances type I collagen protein production by HSCs. Ethanol further perpetuates an activated HSC phenotype through extracellular matrix remodeling. The underlying pathophysiologic mechanisms by which ethanol exerts these pro-fibrogenic effects on HSCs are reviewed.展开更多
(S)-3,5-bistrifluoromethylphenyl ethanol is a key chiral intermediate for the synthesis of NK-1 receptor antagonists. Enantioselective synthesis of (S)-3,5-bistrifluoromethylphenyl ethanol was successfully performed i...(S)-3,5-bistrifluoromethylphenyl ethanol is a key chiral intermediate for the synthesis of NK-1 receptor antagonists. Enantioselective synthesis of (S)-3,5-bistrifluoromethylphenyl ethanol was successfully performed in high enantiomeric excess (e.e.) through asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone catalyzed by Candida tropicalis 104 cells. The influence of some key reaction parameters such as substrate concentration, co-substrate and its concentration, biomass and reaction time was examined, respectively. The results showed that these factors obviously influence the yield, but the optical purity of the prepared product remains intact. The opti-mum conditions for the preparation of (S)-3,5-bistrifluoromethylphenyl ethanol were found to be as follows: sub-strate concentration 50 mmol?L?1; 50 g·L-1 of maltose as co-substrate; wet cell concentration 300 g·L-1; reaction for 30 h. Under above optimal conditions, the maximum yield for (S)-3,5-bistrifluoromethylphenyl ethanol reached 70.3% with 100% of product e.e.展开更多
本实验选用一种镉含量较高的大米为原料,采用碱法提取大米蛋白(alkali-extractable protein,AP),依次用热变性和乙醇沉淀分离AP,制备大米镉结合蛋白(rice Cd-binding protein,RCBP),并分析了RCBP的紫外吸收特征、氨基酸组成、分子质量...本实验选用一种镉含量较高的大米为原料,采用碱法提取大米蛋白(alkali-extractable protein,AP),依次用热变性和乙醇沉淀分离AP,制备大米镉结合蛋白(rice Cd-binding protein,RCBP),并分析了RCBP的紫外吸收特征、氨基酸组成、分子质量及二级结构。结果显示:AP、热变性蛋白(thermally denaturated protein,TP)和乙醇沉淀蛋白(ethanol-precipitated protein,EP)均在210 nm波长处有最大吸收峰,氨基酸组成类似;热变性去除了分子质量为94 k D的蛋白质,分子质量为5 094 k D的蛋白质含量减少,乙醇沉淀进一步减少了分子质量分别为50 k D和14 k D的蛋白质。AP的二级结构主要为α-螺旋和β-转角,有少量β-折叠;TP的二级结构只含有β-折叠和β-转角,且以β-折叠为主;EP的二级结构主要为β-折叠和β-转角,还含有少量α-螺旋和无规卷曲。表明热变性和乙醇沉淀使得AP中的镉结合蛋白得到分离,可以作为一种分离RCBP的方法。展开更多
Two new compounds, melanochromone and 2-ethoxyl-2-(4-hydroxyphenyl)ethanol. were isolated from the whole plants of Melanosoiadum pimpinelloideum II. Boiss. The known compounds isolated were 1-(4-hydroxyphenyl)-1.2etha...Two new compounds, melanochromone and 2-ethoxyl-2-(4-hydroxyphenyl)ethanol. were isolated from the whole plants of Melanosoiadum pimpinelloideum II. Boiss. The known compounds isolated were 1-(4-hydroxyphenyl)-1.2ethanediol. tymine. cimifugin, umtatin. bergenin. daucosterol and stigmasterol. Their structures were determined on the basis of spectral data.展开更多
1-(2-chlorophenyl) ethanol (CPE) is of health and environmental concern due to its toxicity and its use as an inter-mediate in pharmaceutical manufacturing. The current work deals with the catalytic reductive dechlori...1-(2-chlorophenyl) ethanol (CPE) is of health and environmental concern due to its toxicity and its use as an inter-mediate in pharmaceutical manufacturing. The current work deals with the catalytic reductive dechlorination and detoxification of CPE by Pd/Fe bimetal. CPE was effectively dechlorinated to 1-phenyl ethanol (PE) accompanied by the equivalent release of chloride. The extent of CPE dechlorination increased with temperature,Fe dosage and Pd loading. A decrease in solution pH increased CPE dechlorination,resulting presumably from an increase in hydrogen production. Under the specific conditions of 20 g/L Pd/Fe,0.10% Pd (w/w) and initial pH 5-6,the CPE dechlorination was completed within 145 min. The dechlorination fol-lowed a pseudo-first-order kinetics with an activation energy of 56.7 kJ/mol. The results of toxicity testing showed that CPE was very toxic to Chlorella,whereas PE showed little toxicity. The toxicity of the reaction solution declined gradually and the pro-moting effects on Chlorella intensified consequently with the dechlorination process. Thus,the reductive dechlorination of CPE to PE by Pd/Fe was a detoxification process. It may be used to effectively reduce the toxicological effects of CPE-contaminated wastewater,thereby enhancing the performance of subsequent biological processes in wastewater treatment.展开更多
Well crystalline gadolinium oxide(Gd2O3) nanostructures were grown by annealing the hydrothermally as-prepared nanostructures without using any template. Microscopic studies of Gd2O3 nanostructures were recorded alo...Well crystalline gadolinium oxide(Gd2O3) nanostructures were grown by annealing the hydrothermally as-prepared nanostructures without using any template. Microscopic studies of Gd2O3 nanostructures were recorded along the [111] direction due to the clearly resolved interplanar distance d(222)-0.31 nm of the cubic crystal structure Gd2O3. Sensing mechanism of Gd2O3 as efficient electron mediator for the detection of ethanol was explored. As-fabricated sensor demonstrated the high-sensitivity of -0.266 μAm/M/cm2 with low detection limit(-52.2 μmol/L) and correlation coefficient(r^2, 0.618). To the best of our knowledge, this was the first report for the detection of ethanol using as-grown(at 1000 oC) Gd2O3 nanostructures by simple and reliable Ⅰ-Ⅴ technique and rapid assessment of the reaction kinetics(in the order of seconds). The low cost of the starting reagents and the simplicity of the synthetic route made it a promising chemical sensor for the detection of various toxic analytes, which are not environmentally safe.展开更多
(R)-2-Chloro-l-(m-chlorophenyl)ethanol,a precursor of(R)-3-chlorostyrene oxide which is the key chiral intermediate for the preparation of severalβ3-adrenergic receptor agonists was prepared in 40%yield and 99%...(R)-2-Chloro-l-(m-chlorophenyl)ethanol,a precursor of(R)-3-chlorostyrene oxide which is the key chiral intermediate for the preparation of severalβ3-adrenergic receptor agonists was prepared in 40%yield and 99%ee by the Lipozyme TL IM-catalyzed second resolution of the corresponding racemate in the presence of vinyl acetate.展开更多
A microporous supramolecular framework with high water and thermal stability can selectively absorb water molecules over methanol or ethanol due to the suitable channels.The model separation test on columns shows that...A microporous supramolecular framework with high water and thermal stability can selectively absorb water molecules over methanol or ethanol due to the suitable channels.The model separation test on columns shows that an ultra-pure ethanol(99.9%)can be obtained from the mixture of ethanol/water(95:5).Additionally,after refluxing the desolvated sample in 95%ethanol at 60℃for 5 h,the purity of ethanol rises up to 97.43%,which is obviously higher than 96.56%for 4 A molecular sieves.展开更多
文摘We isolated a novel laminarinase ULam111 from Flavobacterium sp. strain UMI-01. Purified ULam111 showed degradation activity against laminarin with the specific activity of 224 ± 18 U/mg at 30°C and pH 6.0. Its optimum temperature was 50°C, and degradation activities against laminarin were observed at 4°C - 80°C. With a laminarin degradation system, we investigated the preparation and properties of immobilized ULam111 with the use of the 11 types of carriers. The high activity recoveries of immobilized ULam111 were as follows: 19.4% for IB-S60P carrier beads (the non-ionic type), 15.6% for IB-S60S carrier beads (the non-ionic type), 11.9% for IB-150P carrier beads (the covalent type), and 7.1% for IB-C435 carrier beads (the cationic type). With the repeated use of immobilized ULam111, the enzyme activities immobilized on IB-S60S and those on IB-S60P remained at 40% and 30% respectively after the sixth trial. We selected IB-S60S as suitable beads for enzyme immobilization, and we attempted to construct a reactor system with ULam111 immobilized on IB-S60S beads. In this system, 1.2 - 1.9 g/L glucose was repeatedly produced from 30 mg/mL laminarin solutions after 20 hr when the reactor operation was repeated 10 times. We examined ethanol fermentation from the saccharified solutions with a marine-derived yeast (Saccharomyces cerevisiae C-19), and 0.51 - 0.58 g/L bioethanol was produced from the saccharified solution that contained 1.71 - 1.86 g/L of glucose.
基金supported by Natural Science Foundation of Hebei Province(B2018208154)Department of Education of Hebei Province,P.R.China(SLRC2019051)Key Foundation of Hebei Provincial Department of Science and Technology,P.R.China(21373703D).
文摘Nonaqueous amine-based system is an attractive solution to overcome high-energy-intensive CO_(2) capture process using the conventional aqueous amines.Advanced nonaqueous absorbent of 2-(butylamino)ethanol(BAE)with 2-butoxyethanol(2-BE)has been recently proposed for low-energyconsumption CO_(2) capture.In this work,Henry’s law constants of CO_(2) in the BAE/2-BE blend were obtained by N_(2)O/CO_(2) analogy,and correlated in the temperature range of(283–333)K.Vapor-liquid equilibrium(VLE)data for the BAE+CO_(2)+2-BE system at 65.4%(mass)BAE were also determined in a stirred equilibrium cell at temperatures of(313–393)K and CO_(2) partial pressures up to 275 kPa.A single apparent equilibrium constant KCO_(2);app was proposed for this system and correlated as a function of temperature,carbonated degree of amine and CO_(2) loading.Solubility data were well represented by the modified Kent-Eisenberg model with an average absolute relative deviation(AARD)of 13%.
基金National Natural Science Foundation of China(82100488)Key Research and Development Pro⁃gram Project of Shaanxi Province(2021SF-071)and National Training Program of Innovation and Entrepreneurship for Students of China(201910716019,201910716020,202110716027)。
文摘Objective To investigate the potential therapeutic targets and pharmacological mechanism of(-)-epigallocatechin-3-gallate(EGCG)based on network pharmacology and experimental verification.METHODS The druggability of EGCG was measured by the traditional Chinese medicine systems pharmacology(TCMSP)server,and potential targets of EGCG were identified by Pharm Mapper and Drug Repositioning and Adverse drug Reaction via Chemical-Protein Interactome(DRAR-CPI).The potential targets were imported into GeneMANIA database to obtain the protein-protein direct interaction network,and target physical interaction,co-expression,prediction,genetic interaction,and shared protein domains.The biological process,molecular functions,cellular components and KEGG signaling pathways of potential targets were analyzed using DAVID database.For further study,ethanol was used to establish a model of endothelial injury in vitro.The cell viability was assayed by MTT method,the cellular apoptosis was stained by Annexin V/PI,and the expression levels of Bcl-2,Bax and cleved-caspase-3 were tested by Western blotting.Then,JC-1 and nuclear translocation of NF-κB experiments were used to study the mitochondrial membrane potential and nuclear translocation.RESULTS The oral availability of EGCG was 55.09%(≥30%)and drug-like index was 0.77(≥0.18),which were considered pharmacokinetically active.17 potential targetable proteins of EGCG were predicted by Pharm Mapper and DRAR-CPI.Further research showed that 68.13%displayed similar co-expression characteristics,26.11%physical interactions,and 2.74%shared the same protein domain.The depth network analysis results showed that the biofunctions of EGCG were mainly by regulating glutathione derivative biosynthetic process,glutathione metabolic process,nitrogen compound metabolic process etc..via drug binding,catalytic activity,glutathione transferase activity,anion binding etc..in sarcoplasmic reticulum,spindle pole,microtubule cytoskeleton and cytoplasm.KEGG enrichment analysis showed that Glutathione metabolism,IL^(-1)7 signaling pathway,EGFR tyrosine kinase inhibitor resistance,PI3K-Akt signaling pathway and other pathways were involves in the biofunction of EGCG.The above analyses indicated that EGCG exerts its biofunction through antioxidant and anti-inflammatory mechanisms.The experimental results showed that ethanol 20.0 mmol·L^(-1) decreased cell viability,Bcl-2 expression,and increased cell apoptosis,the intracellular ROS,as well as the expression of Bax and cleaved-caspase-3 of human endothelial cells.However,treatment of the cells with EGCG can significantly alleviate ethanol induced endothelial cells injury.Further study showed that EGCG significantly alleviates ethanol induced mitochondrial depolarization and nuclear translocation of NF-κB.CONCLUSIONS EGCG exerts pharmacological efficacies on ethanol induced endothelial cell injury through multi-target,multi-function and multi-pathway mode.Protective effect of EGCG on ethanol induced cell injury was mainly through alteration of mitochondrial function and NF-κB translocation.Therefore,EGCG have great potential in protecting against endothelial dysfunction of the persons who are chronically abuse of ethanol.This study also provides a new understanding of EGCG in clinical application on cardiovascular and cerebrovascular diseases.
文摘A simple and specific gas chromatographic method developed and validated for the determination of 2-(2-chloroethoxy) ethanol in Quetiapine Fumarate. The method is carried out with a flame ionization detector and DB-FFAP capillary column. The linearity was established over a range of 40-150 μg ml-1 and correlation coefficient is more than 0.999.
文摘Focusing our DFT calculations on the carboxylic acid drugs such as ibuprofen drug (IBF), it has been concluded that the anions of these types of drugs have the spontaneous electron donor character to all the carcinogenic cells of electron deficiency in their nuclei. Due to the spontaneity of electron transfer of anions, it has been found clinically that ibuprofen drug cures cancers of colon, protostate, lung and breast. The breast cancer treatment of Matthew Gdovin group in two hours by injection of ethanolic solution of nitrobenzaldehyde in the breast tumor in presence of uv-irradiation has been studied from TD-DFT point of view;the excited states of these molecules in presence of uv-irradiation act as electron donors to the cancerous cells to compensate the electron deficiency. Finally, it has been concluded that the electron transfer is the main cause of the breast cancer treatment which is the most aggressive type of cancers and is one of the hardest to treat.
文摘A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.
文摘Evidence has accumulated to suggest an important role of ethanol and/or its metabolites in the pathogenesis of alcohol-related liver disease. In this review, the fibrogenic effects of ethanol and its metabolites on hepatic stellate cells (HSCs) are discussed. In brief, ethanol interferes with retinoid metabolism and its signaling, induces the release of fibrogenic cytokines such as transforming growth factor β-1 (TGFβ-1) from HSCs, up-regulates the gene expression of collagen I and enhances type I collagen protein production by HSCs. Ethanol further perpetuates an activated HSC phenotype through extracellular matrix remodeling. The underlying pathophysiologic mechanisms by which ethanol exerts these pro-fibrogenic effects on HSCs are reviewed.
基金Supported by the National'Natural Science Foundation of China (21076193) and Foundation of Zhejiang Key Developing Discipline of Pharmacy (20100609).
文摘(S)-3,5-bistrifluoromethylphenyl ethanol is a key chiral intermediate for the synthesis of NK-1 receptor antagonists. Enantioselective synthesis of (S)-3,5-bistrifluoromethylphenyl ethanol was successfully performed in high enantiomeric excess (e.e.) through asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone catalyzed by Candida tropicalis 104 cells. The influence of some key reaction parameters such as substrate concentration, co-substrate and its concentration, biomass and reaction time was examined, respectively. The results showed that these factors obviously influence the yield, but the optical purity of the prepared product remains intact. The opti-mum conditions for the preparation of (S)-3,5-bistrifluoromethylphenyl ethanol were found to be as follows: sub-strate concentration 50 mmol?L?1; 50 g·L-1 of maltose as co-substrate; wet cell concentration 300 g·L-1; reaction for 30 h. Under above optimal conditions, the maximum yield for (S)-3,5-bistrifluoromethylphenyl ethanol reached 70.3% with 100% of product e.e.
文摘本实验选用一种镉含量较高的大米为原料,采用碱法提取大米蛋白(alkali-extractable protein,AP),依次用热变性和乙醇沉淀分离AP,制备大米镉结合蛋白(rice Cd-binding protein,RCBP),并分析了RCBP的紫外吸收特征、氨基酸组成、分子质量及二级结构。结果显示:AP、热变性蛋白(thermally denaturated protein,TP)和乙醇沉淀蛋白(ethanol-precipitated protein,EP)均在210 nm波长处有最大吸收峰,氨基酸组成类似;热变性去除了分子质量为94 k D的蛋白质,分子质量为5 094 k D的蛋白质含量减少,乙醇沉淀进一步减少了分子质量分别为50 k D和14 k D的蛋白质。AP的二级结构主要为α-螺旋和β-转角,有少量β-折叠;TP的二级结构只含有β-折叠和β-转角,且以β-折叠为主;EP的二级结构主要为β-折叠和β-转角,还含有少量α-螺旋和无规卷曲。表明热变性和乙醇沉淀使得AP中的镉结合蛋白得到分离,可以作为一种分离RCBP的方法。
基金We are indebted to Di-Ao Science Foundation for the financial support.
文摘Two new compounds, melanochromone and 2-ethoxyl-2-(4-hydroxyphenyl)ethanol. were isolated from the whole plants of Melanosoiadum pimpinelloideum II. Boiss. The known compounds isolated were 1-(4-hydroxyphenyl)-1.2ethanediol. tymine. cimifugin, umtatin. bergenin. daucosterol and stigmasterol. Their structures were determined on the basis of spectral data.
基金Project (Nos. 20977085 and 20688702) supported by the National Natural Science Foundation of China
文摘1-(2-chlorophenyl) ethanol (CPE) is of health and environmental concern due to its toxicity and its use as an inter-mediate in pharmaceutical manufacturing. The current work deals with the catalytic reductive dechlorination and detoxification of CPE by Pd/Fe bimetal. CPE was effectively dechlorinated to 1-phenyl ethanol (PE) accompanied by the equivalent release of chloride. The extent of CPE dechlorination increased with temperature,Fe dosage and Pd loading. A decrease in solution pH increased CPE dechlorination,resulting presumably from an increase in hydrogen production. Under the specific conditions of 20 g/L Pd/Fe,0.10% Pd (w/w) and initial pH 5-6,the CPE dechlorination was completed within 145 min. The dechlorination fol-lowed a pseudo-first-order kinetics with an activation energy of 56.7 kJ/mol. The results of toxicity testing showed that CPE was very toxic to Chlorella,whereas PE showed little toxicity. The toxicity of the reaction solution declined gradually and the pro-moting effects on Chlorella intensified consequently with the dechlorination process. Thus,the reductive dechlorination of CPE to PE by Pd/Fe was a detoxification process. It may be used to effectively reduce the toxicological effects of CPE-contaminated wastewater,thereby enhancing the performance of subsequent biological processes in wastewater treatment.
基金the support of the Ministry of Higher Education, Saudi Arabia, for this research under the grant funded to promising Centre for Sensors and Electronic Devices (PCSED) at Najran University, Saudi Arabia
文摘Well crystalline gadolinium oxide(Gd2O3) nanostructures were grown by annealing the hydrothermally as-prepared nanostructures without using any template. Microscopic studies of Gd2O3 nanostructures were recorded along the [111] direction due to the clearly resolved interplanar distance d(222)-0.31 nm of the cubic crystal structure Gd2O3. Sensing mechanism of Gd2O3 as efficient electron mediator for the detection of ethanol was explored. As-fabricated sensor demonstrated the high-sensitivity of -0.266 μAm/M/cm2 with low detection limit(-52.2 μmol/L) and correlation coefficient(r^2, 0.618). To the best of our knowledge, this was the first report for the detection of ethanol using as-grown(at 1000 oC) Gd2O3 nanostructures by simple and reliable Ⅰ-Ⅴ technique and rapid assessment of the reaction kinetics(in the order of seconds). The low cost of the starting reagents and the simplicity of the synthetic route made it a promising chemical sensor for the detection of various toxic analytes, which are not environmentally safe.
基金support from the National Natural Science Foundation of China(No20672110)
文摘(R)-2-Chloro-l-(m-chlorophenyl)ethanol,a precursor of(R)-3-chlorostyrene oxide which is the key chiral intermediate for the preparation of severalβ3-adrenergic receptor agonists was prepared in 40%yield and 99%ee by the Lipozyme TL IM-catalyzed second resolution of the corresponding racemate in the presence of vinyl acetate.
基金support from the National Key Research and Development Program of China(No.2017YFA0700102)the National Natural Science Foundation of China(Nos.21871266 and 21731006)+1 种基金the Key Research Program of Frontier Science CAS(No.QYZDY-SSW-SLH025)Youth Innovation Promotion Association CAS.
文摘A microporous supramolecular framework with high water and thermal stability can selectively absorb water molecules over methanol or ethanol due to the suitable channels.The model separation test on columns shows that an ultra-pure ethanol(99.9%)can be obtained from the mixture of ethanol/water(95:5).Additionally,after refluxing the desolvated sample in 95%ethanol at 60℃for 5 h,the purity of ethanol rises up to 97.43%,which is obviously higher than 96.56%for 4 A molecular sieves.