Flower-liked SnO_2 nanorods were prepared by a hydrothermal method.The sensors were fabricated using SnO_2 nanorods adsorption of Au nanoparticles through sputtering deposition.We found that the loading of a small amo...Flower-liked SnO_2 nanorods were prepared by a hydrothermal method.The sensors were fabricated using SnO_2 nanorods adsorption of Au nanoparticles through sputtering deposition.We found that the loading of a small amount of Au nanoparticles on the surface of SnO_2 nanorods can effectively enhance and functionalize the gas sensing performance of SnO_2 nanorods,which due to the Au adsorption make the surface-depletion effect more pronounced.Such enhanced surface depletion increases the sensitivity,lowers the operation temperature and decreases the response time.展开更多
In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measur...In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.展开更多
High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising stra...High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.展开更多
We have comparatively studied the addition of Cr and V in titania.Cr and V content were changed by means of insets placed in the Ti target.Structural,compositional and electrical analyses of different series of thin f...We have comparatively studied the addition of Cr and V in titania.Cr and V content were changed by means of insets placed in the Ti target.Structural,compositional and electrical analyses of different series of thin films,made by XRF, XRD,are presented.Electrical characterization not only showed that Cr doped layers were very sensitive to ethanol within a useful range for applications,but also allowed to verify that the electrical behaviour is dependent on the structure of film. Finally,the Cr and V concentrations that gives the best results in terms of sensing performances has been determined and a correlation between structural and electrical measurement has been evidenced.展开更多
Metal oxide semiconductor heterojunctions(MOSHs)can enhance the performance of ethanol gas sen-sors substantially.Ethanol gas sensors based on MOSHs are cost-effective and have excellent sensing response,good selectiv...Metal oxide semiconductor heterojunctions(MOSHs)can enhance the performance of ethanol gas sen-sors substantially.Ethanol gas sensors based on MOSHs are cost-effective and have excellent sensing response,good selectivity,fast response and recovery,long-term stability or repeatability,a low operating temperature,a facile fabrica-tion process,and versatile applications.This paper reviews the recent advances in gas sensors that are based on MOSHs and the advantages of using them to detect ethanol gas.According to the literature,compared with ethanol gas sen-sors that use single-component sensing materials,the MOSHs exhibit superior performance due to the synergy between the different components,which can amplify the reception and transduction components of the sensor signals.To the best of our knowledge,heterojunctions can be grouped into four main categories as metal oxide/metal oxide,metal oxide/metal sulfide,metal oxide/noble metal,and metal oxide/other materials,including rare-earth metals,g-C_(3)N_(4),and graphene,heterojunctions.The future trends and challenges that would be faced in the development of ethanol gas sensors based on MOSHs are discussed in detail.Finally,critical ideas and thinking regarding the future progress of MOSH-based gas sensors are presented.展开更多
Ternary Au/Fe2O3-ZnO gas-sensing materials were synthesized by combining co-precipitation and microwave irradiation process.The as-prepared Au/Fe2O3-ZnO was characterized with X-ray diffractometer and scanning electro...Ternary Au/Fe2O3-ZnO gas-sensing materials were synthesized by combining co-precipitation and microwave irradiation process.The as-prepared Au/Fe2O3-ZnO was characterized with X-ray diffractometer and scanning electron microscope,and its gas-sensing performance was measured using a gas-sensor analysis system.The results show that the as-prepared products consist of hexagonal wurtzite ZnO,face-centered cubic gold nanoparticles and orthorhombic Fe2O3crystallines.The Au/Fe2O3-ZnO based sensor has a very high selectivity to ethanol and acetone,and also has high sensitivity(154)at a low working temperature(270°C)and an extremely fast response(1s)against acetone.It is found that the selectivity can be adjusted by Fe2O3content added in the ternary materials.It possesses a worth looking forward prospect to practical applications in acetone detecting and administrating field.展开更多
With the progress of the laser manufacturing technology, trace gas sensors based on tunable interband cascade lasers (ICLs) and quantum cascade lasers (QCLs) have been widely used to detect organic compounds with ...With the progress of the laser manufacturing technology, trace gas sensors based on tunable interband cascade lasers (ICLs) and quantum cascade lasers (QCLs) have been widely used to detect organic compounds with high sensitivity. Compared with overtone and combination bands in the near infrared region, for many species, the intensities of fundamental rotational-vibrational absorption bands in the mid-infrared region are much stronger. In this paper, we demonstrate an ethanol sensor using a room-temperature continuous-wave (CW) tunable ICL laser as a light source to detect ethanol vapor concentration with high sensitivity. Combined with the first harmonic (1 f) normalized second harmonic (2f) wavelength modulation spectroscopy (WMS) technology, the characteristics of the harmonics of the system are analyzed, and the amplitude of the first harmonic decrease with an increased concentration of ethanol has been demonstrated both theoretically and experimentally. As a result, a detection limitation of 28 ppb is achieved.展开更多
Networks of pristine high quality single walled carbon nanotubes (SWNTs), the SWNTs after Ar-plasma treatment (from 2 to 12 rain) and carbon nanobuds (CNBs) have been tested for ethanol vapor sensing. It was fou...Networks of pristine high quality single walled carbon nanotubes (SWNTs), the SWNTs after Ar-plasma treatment (from 2 to 12 rain) and carbon nanobuds (CNBs) have been tested for ethanol vapor sensing. It was found that the pristine high quality SWNTs do not exhibit any ethanol sensitivity, while the introduction of defects in the tubes results in the appearance of the ethanol sensitivity. The CNB network showed ethanol sensitivity without plasma treatment. Both CNB and low defect (after 3 min treatment) SWNT networks exhibit significant drift in the resistance baseline, while heavily plasma-treated (9 min) SWNTs exhibited high ethanol vapor sensitivity without the baseline change. The mechanisms of the ethanol sensitivity and stability after the plasma irradiation are attributed to the formation of sensitive dangling bonds in the SWNTs and formation of defect channels facilitating access of the ethanol vapor to all parts of the bundled nanotubes.展开更多
文摘Flower-liked SnO_2 nanorods were prepared by a hydrothermal method.The sensors were fabricated using SnO_2 nanorods adsorption of Au nanoparticles through sputtering deposition.We found that the loading of a small amount of Au nanoparticles on the surface of SnO_2 nanorods can effectively enhance and functionalize the gas sensing performance of SnO_2 nanorods,which due to the Au adsorption make the surface-depletion effect more pronounced.Such enhanced surface depletion increases the sensitivity,lowers the operation temperature and decreases the response time.
基金supported by the National Basic Research Priorities Program of China (No.2007CB936601)the National Natural Science Foundation of China (Nos.10876017 and 91023037)
文摘In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.
基金This work is supported partially by the project of the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Nos.LAPS21004,LAPS202114)National Natural Science Foundation of China(Nos.52272200,51972110,52102245 and 52072121)+6 种基金Beijing Science and Technology Project(No.Z211100004621010)Beijing Natural Science Foundation(Nos.2222076,2222077)Hebei Natural Science Foundation(No.E2022502022)Huaneng Group Headquarters Science and Technology Project(No.HNKJ20-H88)2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,China Postdoctoral Science Foundation(No.2022M721129)the Fundamental Research Funds for the Central Universities(Nos.2022MS030,2021MS028,2020MS023,2020MS028)the NCEPU“Double First-Class”Program.This research was also supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(No.2021H1D3A2A01100019).
文摘High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.
文摘We have comparatively studied the addition of Cr and V in titania.Cr and V content were changed by means of insets placed in the Ti target.Structural,compositional and electrical analyses of different series of thin films,made by XRF, XRD,are presented.Electrical characterization not only showed that Cr doped layers were very sensitive to ethanol within a useful range for applications,but also allowed to verify that the electrical behaviour is dependent on the structure of film. Finally,the Cr and V concentrations that gives the best results in terms of sensing performances has been determined and a correlation between structural and electrical measurement has been evidenced.
基金financially supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (No.2021H1D3A2A01100019)the National Natural Science Foundation of China (No.62074057)+2 种基金Projects of Science and Technology Commission of Shanghai Municipality (Nos.19ZR1473800 and 18DZ2270800)the Open Research Projects of Zhejiang Lab (No.2021MCOAB06)the Postdoctoral Scientific Research Foundation of Qingdao
文摘Metal oxide semiconductor heterojunctions(MOSHs)can enhance the performance of ethanol gas sen-sors substantially.Ethanol gas sensors based on MOSHs are cost-effective and have excellent sensing response,good selectivity,fast response and recovery,long-term stability or repeatability,a low operating temperature,a facile fabrica-tion process,and versatile applications.This paper reviews the recent advances in gas sensors that are based on MOSHs and the advantages of using them to detect ethanol gas.According to the literature,compared with ethanol gas sen-sors that use single-component sensing materials,the MOSHs exhibit superior performance due to the synergy between the different components,which can amplify the reception and transduction components of the sensor signals.To the best of our knowledge,heterojunctions can be grouped into four main categories as metal oxide/metal oxide,metal oxide/metal sulfide,metal oxide/noble metal,and metal oxide/other materials,including rare-earth metals,g-C_(3)N_(4),and graphene,heterojunctions.The future trends and challenges that would be faced in the development of ethanol gas sensors based on MOSHs are discussed in detail.Finally,critical ideas and thinking regarding the future progress of MOSH-based gas sensors are presented.
基金Project(30916014103) supported by the Fundamental Research Funds for the Central Universities,China
文摘Ternary Au/Fe2O3-ZnO gas-sensing materials were synthesized by combining co-precipitation and microwave irradiation process.The as-prepared Au/Fe2O3-ZnO was characterized with X-ray diffractometer and scanning electron microscope,and its gas-sensing performance was measured using a gas-sensor analysis system.The results show that the as-prepared products consist of hexagonal wurtzite ZnO,face-centered cubic gold nanoparticles and orthorhombic Fe2O3crystallines.The Au/Fe2O3-ZnO based sensor has a very high selectivity to ethanol and acetone,and also has high sensitivity(154)at a low working temperature(270°C)and an extremely fast response(1s)against acetone.It is found that the selectivity can be adjusted by Fe2O3content added in the ternary materials.It possesses a worth looking forward prospect to practical applications in acetone detecting and administrating field.
文摘With the progress of the laser manufacturing technology, trace gas sensors based on tunable interband cascade lasers (ICLs) and quantum cascade lasers (QCLs) have been widely used to detect organic compounds with high sensitivity. Compared with overtone and combination bands in the near infrared region, for many species, the intensities of fundamental rotational-vibrational absorption bands in the mid-infrared region are much stronger. In this paper, we demonstrate an ethanol sensor using a room-temperature continuous-wave (CW) tunable ICL laser as a light source to detect ethanol vapor concentration with high sensitivity. Combined with the first harmonic (1 f) normalized second harmonic (2f) wavelength modulation spectroscopy (WMS) technology, the characteristics of the harmonics of the system are analyzed, and the amplitude of the first harmonic decrease with an increased concentration of ethanol has been demonstrated both theoretically and experimentally. As a result, a detection limitation of 28 ppb is achieved.
文摘Networks of pristine high quality single walled carbon nanotubes (SWNTs), the SWNTs after Ar-plasma treatment (from 2 to 12 rain) and carbon nanobuds (CNBs) have been tested for ethanol vapor sensing. It was found that the pristine high quality SWNTs do not exhibit any ethanol sensitivity, while the introduction of defects in the tubes results in the appearance of the ethanol sensitivity. The CNB network showed ethanol sensitivity without plasma treatment. Both CNB and low defect (after 3 min treatment) SWNT networks exhibit significant drift in the resistance baseline, while heavily plasma-treated (9 min) SWNTs exhibited high ethanol vapor sensitivity without the baseline change. The mechanisms of the ethanol sensitivity and stability after the plasma irradiation are attributed to the formation of sensitive dangling bonds in the SWNTs and formation of defect channels facilitating access of the ethanol vapor to all parts of the bundled nanotubes.