Effect of 1,1-dibutoxybutane (DBB) addition on petroleum DF (diesel fuel) performance has been studied. The study wasstarted by preparing DBB from decomposition of 1 -butanol on manganese impregnated on activated ...Effect of 1,1-dibutoxybutane (DBB) addition on petroleum DF (diesel fuel) performance has been studied. The study wasstarted by preparing DBB from decomposition of 1 -butanol on manganese impregnated on activated carbon (Mn/AC) catalyst at 450 ℃ in stainless steel reactor. The product was distilled at 200 ℃ and the residue obtained was analyzed by GC-MS and HSQC NMR toconfirm its structure and purity. The DBB-DF mixtures were prepared at different compositions and determined their excess molarvolume, homogeneity, phase stability, ignition quality, lubricity, cold flow quality, energy content, and viscosity. The addition of DBBinto DF formed a homogeneous mixture and had a good phase stability. The mixtures gave positive excess molar volume values overthe whole concentration ranges. The ignition quality and lubricity of the mixtures increased without lost in cold flow quality. Slightdecreased in viscosity and energy content per mass unit were observed.展开更多
The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0...The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.展开更多
Natural gas/diesel dual-fuel combustion strategy has a great potential to reduce emissions for marine engines while the high fuel consumption is the major problem.Pre-chamber system is commonly employed as the ignitio...Natural gas/diesel dual-fuel combustion strategy has a great potential to reduce emissions for marine engines while the high fuel consumption is the major problem.Pre-chamber system is commonly employed as the ignition system on large-bore dual-fuel marine engines especially under lean-burn condition,due to its advanced ignition stability and engine efficiency.However,the ignition and combustion mechanism in such dual-fuel pre-chamber engine is still unclear and the effects of in-cylinder swirl flow and mixture stratification on combustion require further investigation specifically.This paper numerically studied the detailed ignition mechanism and combustion process in a marine engine equipped with a pre-chamber ignition system,and revealed the flame development process in main chamber.Moreover,the effects of mixture stratification and swirl ratio on the combustion rate and further engine thermal efficiency are investigated under decoupled condition.The results mainly show that the jet flame develops along the pre-chamber orifice centerline at the initial stage and premixed combustion play an important role,while after that,heat release zone only exist at flame surface,and premixed flame propagation controls the combustion process.In addition,with higher swirl ratio the combustion rate increases significantly due to the wider ignition area.Mixture stratification degree plays a role in accelerating the combustion,either too high or too low stratification degree reduce the combustion rate,while a moderate stratification increases the combustion rate.And appropriate stratification degree by verifying the gas injection parameters can reduce fuel consumption in 0.3%.展开更多
This paper presents results on the combustion of syngas fuel in re-circulating vortex combustor. The combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated ...This paper presents results on the combustion of syngas fuel in re-circulating vortex combustor. The combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel-air stream. CFD (computational fluid dynamics) analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor using synthetic gas or syngas fuel produced from the gasification process. The flame temperature, the flow field and species concentrations inside the vortex trapped combustor were obtained. Several syngas fuels with different fuel compositions (H2, CO, CH4, CO2, N2 and H20) and lower heating values were tested in this study. The changes on the flame temperature and species concentrations inside the combustor, the emissions of NOx, CO, CO2 at the exit of the combustor, the combustor efficiency and the total pressure drop for syngas fuels are presented in this paper. The effect of H2/CO ratio and the mass fraction of each constituent of syngas fuels and hydrogen-methane fuel mixtures on the combustion and emissions performances were investigated.展开更多
In order to probe into the single ignition characteristics of mixed solid and liquid fuel, optical and electrical experinments on unconfined volume dispersion and single ignition of few dosage of ternary fuel mixture ...In order to probe into the single ignition characteristics of mixed solid and liquid fuel, optical and electrical experinments on unconfined volume dispersion and single ignition of few dosage of ternary fuel mixture are successfully done. Experimental results show that cloud detonation is distinguished from explosion of trinitrotoluene charge. The single ignition process of mixed fuel containing aluminum powder(Al), propylene oxide (PO) and explosive (TNT) can be divided into four stages, the overpressure within its explosion field first increases, then decays with increase of distance. Explosion effects can be enhanced with adding proper trinitrotoluene into fuel mixture, the optimized ratio is m (Al) : m (PO): m (TNT) - 55:35: 10. The overpressure of binary mixed fuel containing Al and TNT decays like trinitrotoluene charge with increase of distance, but its value is higher than the trinitrotoluene charge's in the same mass at longer distance. The continual action time of plus overpressure during cloud detonation reaches magnitude of 10 ms and is about 100 times longer than the trinitrotoluene charge' s.展开更多
Chemical non-equilibrium flow was investigated for the scramjet single expansion ramp nozzle(SERN)with a strut-based liquid-kerosene-fueled combustor.Two-dimensional Reynolds-averaged NavierStokes(RANS)equations were ...Chemical non-equilibrium flow was investigated for the scramjet single expansion ramp nozzle(SERN)with a strut-based liquid-kerosene-fueled combustor.Two-dimensional Reynolds-averaged NavierStokes(RANS)equations were solved with the species conservation equation for continuous phase and the renormalization group(RNG)k-εturbulence model.Lagrangian discrete-phase model was analyzed for liquidkerosene droplets behavior in the supersonic stream.Combustion was simulated by kerosene surrogate fuel's10-species and 13-step reduced reaction kinetics mechanism with use of Arrhenius's laminar finite rate model.Parametric studies were carried out to estimate the influence of different fuel injection positions and equivalent mixture ratios on the SERN chemical non-equilibrium effects.Numerical calculation results show that the strutbased combustor enables convenient modeling of various SERN entry conditions,which is similar with many preceding investigations,by changing the injector strut position and controlling the mass flow rate of each injector.Chemical non-equilibrium effects function in the whole SERN,especially in the initial flow expansion region,leads to obviously higher SERN performance of the non-equilibrium flow than that of the frozen flow.Furthermore,the distributed fuel injection pattern plays a significant role in enhancing the combustion efficiency in combustor,but weakening the chemical non-equilibrium effects funciton in SERN.Additionally,while the equivalent mixture ratio increases,the SERN thrust coefficient and lift coefficient rise gradually,and the increment of non-equilibrium flow in relation to frozen flow becomes higher as well.To be specific,the equivalent mixture ratio is 0.6,the maximum increment of thrust coefficient and lift coefficient are 11.6% and 25% respectively.展开更多
文摘Effect of 1,1-dibutoxybutane (DBB) addition on petroleum DF (diesel fuel) performance has been studied. The study wasstarted by preparing DBB from decomposition of 1 -butanol on manganese impregnated on activated carbon (Mn/AC) catalyst at 450 ℃ in stainless steel reactor. The product was distilled at 200 ℃ and the residue obtained was analyzed by GC-MS and HSQC NMR toconfirm its structure and purity. The DBB-DF mixtures were prepared at different compositions and determined their excess molarvolume, homogeneity, phase stability, ignition quality, lubricity, cold flow quality, energy content, and viscosity. The addition of DBBinto DF formed a homogeneous mixture and had a good phase stability. The mixtures gave positive excess molar volume values overthe whole concentration ranges. The ignition quality and lubricity of the mixtures increased without lost in cold flow quality. Slightdecreased in viscosity and energy content per mass unit were observed.
文摘The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.
基金the financial supports provided by the Low-speed Marine Diesel Project(Project No.CDGC01-KT0308)National Natural Science Foundation of China(Grant No.91941102)。
文摘Natural gas/diesel dual-fuel combustion strategy has a great potential to reduce emissions for marine engines while the high fuel consumption is the major problem.Pre-chamber system is commonly employed as the ignition system on large-bore dual-fuel marine engines especially under lean-burn condition,due to its advanced ignition stability and engine efficiency.However,the ignition and combustion mechanism in such dual-fuel pre-chamber engine is still unclear and the effects of in-cylinder swirl flow and mixture stratification on combustion require further investigation specifically.This paper numerically studied the detailed ignition mechanism and combustion process in a marine engine equipped with a pre-chamber ignition system,and revealed the flame development process in main chamber.Moreover,the effects of mixture stratification and swirl ratio on the combustion rate and further engine thermal efficiency are investigated under decoupled condition.The results mainly show that the jet flame develops along the pre-chamber orifice centerline at the initial stage and premixed combustion play an important role,while after that,heat release zone only exist at flame surface,and premixed flame propagation controls the combustion process.In addition,with higher swirl ratio the combustion rate increases significantly due to the wider ignition area.Mixture stratification degree plays a role in accelerating the combustion,either too high or too low stratification degree reduce the combustion rate,while a moderate stratification increases the combustion rate.And appropriate stratification degree by verifying the gas injection parameters can reduce fuel consumption in 0.3%.
文摘This paper presents results on the combustion of syngas fuel in re-circulating vortex combustor. The combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel-air stream. CFD (computational fluid dynamics) analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor using synthetic gas or syngas fuel produced from the gasification process. The flame temperature, the flow field and species concentrations inside the vortex trapped combustor were obtained. Several syngas fuels with different fuel compositions (H2, CO, CH4, CO2, N2 and H20) and lower heating values were tested in this study. The changes on the flame temperature and species concentrations inside the combustor, the emissions of NOx, CO, CO2 at the exit of the combustor, the combustor efficiency and the total pressure drop for syngas fuels are presented in this paper. The effect of H2/CO ratio and the mass fraction of each constituent of syngas fuels and hydrogen-methane fuel mixtures on the combustion and emissions performances were investigated.
文摘In order to probe into the single ignition characteristics of mixed solid and liquid fuel, optical and electrical experinments on unconfined volume dispersion and single ignition of few dosage of ternary fuel mixture are successfully done. Experimental results show that cloud detonation is distinguished from explosion of trinitrotoluene charge. The single ignition process of mixed fuel containing aluminum powder(Al), propylene oxide (PO) and explosive (TNT) can be divided into four stages, the overpressure within its explosion field first increases, then decays with increase of distance. Explosion effects can be enhanced with adding proper trinitrotoluene into fuel mixture, the optimized ratio is m (Al) : m (PO): m (TNT) - 55:35: 10. The overpressure of binary mixed fuel containing Al and TNT decays like trinitrotoluene charge with increase of distance, but its value is higher than the trinitrotoluene charge's in the same mass at longer distance. The continual action time of plus overpressure during cloud detonation reaches magnitude of 10 ms and is about 100 times longer than the trinitrotoluene charge' s.
文摘Chemical non-equilibrium flow was investigated for the scramjet single expansion ramp nozzle(SERN)with a strut-based liquid-kerosene-fueled combustor.Two-dimensional Reynolds-averaged NavierStokes(RANS)equations were solved with the species conservation equation for continuous phase and the renormalization group(RNG)k-εturbulence model.Lagrangian discrete-phase model was analyzed for liquidkerosene droplets behavior in the supersonic stream.Combustion was simulated by kerosene surrogate fuel's10-species and 13-step reduced reaction kinetics mechanism with use of Arrhenius's laminar finite rate model.Parametric studies were carried out to estimate the influence of different fuel injection positions and equivalent mixture ratios on the SERN chemical non-equilibrium effects.Numerical calculation results show that the strutbased combustor enables convenient modeling of various SERN entry conditions,which is similar with many preceding investigations,by changing the injector strut position and controlling the mass flow rate of each injector.Chemical non-equilibrium effects function in the whole SERN,especially in the initial flow expansion region,leads to obviously higher SERN performance of the non-equilibrium flow than that of the frozen flow.Furthermore,the distributed fuel injection pattern plays a significant role in enhancing the combustion efficiency in combustor,but weakening the chemical non-equilibrium effects funciton in SERN.Additionally,while the equivalent mixture ratio increases,the SERN thrust coefficient and lift coefficient rise gradually,and the increment of non-equilibrium flow in relation to frozen flow becomes higher as well.To be specific,the equivalent mixture ratio is 0.6,the maximum increment of thrust coefficient and lift coefficient are 11.6% and 25% respectively.