Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation be...Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation behaviors of heavy metals(HMs)contained in raw SS is a key issue on the safety and cleanness of above liquefaction process,which is explored in this study.The results show that pure ethanol facilitates the migration of HMs into biochar products.Pure water yields lower percentages of HMs in mobile/bioavailable speciation.Compared with sole solvent treatment,ethanol-water cosolvent causes a random/average effect on the distribution/transformation behaviors of HMs.After liquefaction of SS in pure water,the contamination degree of HMs is mitigated from high level(25.8(contamination factor))in raw SS to considerable grade(13.4)in biochar and the ecological risk is mitigated from moderate risk(164.5(risk index))to low risk(78.8).Liquefaction of SS in pure ethanol makes no difference to the pollution characteristics of HMs.The combined use of ethanol and water presents similar immobilization effects on HMs to pure water treatment.The contamination factor and risk index of HMs in biochars obtained in ethanol-water cosolvent treatment are 13.1-14.6(considerable grade)and 79.3-101.0(low risk),respectively.In order to further control the pollution of HMs,it is preferentially suggested to improve the liquefaction process of SS in ethanol-water mixed solvents by introducing conventional lignocellulosic/algal biomass,also known as co-liquefaction treatment.展开更多
Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlappin...Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlapping plate-like, hexagonal star-like, dumbbell-like, etc. can be synthesized in the ethanol-water mixtures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrograph (FT-IR). The interrelated effect mechanism is presented in the end. Results show that the modifier carboxyl groups play a significant role in controlling the SrCO3 crystal morphologies, which can alter the crystal growth unit (Sr^2+) supply mode and induce the crystal formation with the morphologies matching their spatial configurations.展开更多
The steady-state fluorescence spectrum characteristic of ethanol-water excimer has been studied in this paper. By analysing the features of the sharp emission spectrum with fine structures in a shortwave band and the ...The steady-state fluorescence spectrum characteristic of ethanol-water excimer has been studied in this paper. By analysing the features of the sharp emission spectrum with fine structures in a shortwave band and the characteristics of the broad and featureless fluorescence peaks in the longwave band, one can conclude that the excimers are formed between the new ethanol-water cluster molecules in the excited state and the ground state through the interaction among different chromophores. The excitation spectra in the two fluorescence bands have been studied, and their emission mechanisms have been ascertained based on the energy transfer theory. Furthermore, the critical distance of the resonance energy transfer has been calculated.展开更多
Ethanol-water near-azeotropic mixture dehydration was investigated by formulated compound starchbased adsorbent(CSA), which consists of corn, sweet potato and foaming agent. The net retention time and separation facto...Ethanol-water near-azeotropic mixture dehydration was investigated by formulated compound starchbased adsorbent(CSA), which consists of corn, sweet potato and foaming agent. The net retention time and separation factor of water over ethanol were measured by inverse gas chromatography(IGC). Results indicated that water has a longer net retention time than ethanol and that low temperature is beneficial to this dehydration process. Orthogonal test was conducted under different vapor feed flow rates, bed temperatures and bed heights, to obtain optimal fixed-bed dehydration condition. Dynamic saturated adsorbance was also studied. It was found that CSA has the same water adsorption capacity(0.15 g/g)as some commercial molecular sieves. Besides, this biosorptive dehydration process was found to be the most energy-efficient compared with other ethanol purification processes.展开更多
The cementation reaction of copper on zinc metal in solutions of different concentrations ofcopper sulphate, at 25℃, has been studied and it is found to be a first order reaction. Moreover,the rates of this reaction ...The cementation reaction of copper on zinc metal in solutions of different concentrations ofcopper sulphate, at 25℃, has been studied and it is found to be a first order reaction. Moreover,the rates of this reaction at 0.15 mol'L-1 copper sulphate solution have been measured in a varietyof ethanol-water media at temperatures from 20℃ to 40℃. The correlation between the masstransfer coefficient and the dielectric constant has been investigated. Also, the thermodynamicparameters of activation have been calculated. The isokinetic relationship reveals the existenceof compensation effect, where the solute-solvent interactions play an important role.展开更多
Four empirical models are tested for fitting the T-y-x equilibrium data of ethanol-water mixture by minimizing the Root Mean Square (RMS) between equilibrium data and theoretical points. The total pressure of the co...Four empirical models are tested for fitting the T-y-x equilibrium data of ethanol-water mixture by minimizing the Root Mean Square (RMS) between equilibrium data and theoretical points. The total pressure of the correspondent data is 101.3 kPa. All models parameters are also identified. The study suggests that NRTL model fits the equilibrium data best with RMS = 0.4 %.展开更多
This use of biomass-based adsorbent has been explored for the column study of the adsorptive dehydration of water in ethanol-water mixtures. The column study was carried out using enzyme modified corn starch and the b...This use of biomass-based adsorbent has been explored for the column study of the adsorptive dehydration of water in ethanol-water mixtures. The column study was carried out using enzyme modified corn starch and the breakthrough curve parameters were used to design the packed bed column. The effect of flow rate on the breakthrough curves revealed that adsorption efficiency decreased with increased inflow rate. The empty bed contact time (τ) of the pilot plant packed column was 35.35 min while the breakthrough time is 40.78 min. 66.7% was the fraction of capacity left unused for the pilot plant from the design.展开更多
An analysis of the molecular dynamics of ethanol solvated by water molecules in the absence and presence of a Pt surface has been performed using DL_POLY_2.19 code. The structure and diffusion properties of an ethanol...An analysis of the molecular dynamics of ethanol solvated by water molecules in the absence and presence of a Pt surface has been performed using DL_POLY_2.19 code. The structure and diffusion properties of an ethanol–water system have been studied at various temperatures from 250 to 600 K. We have measured the self-diffusion coefficients of the 50:50% ethanol–water solution;in the absence of a Pt surface our results show an excellent agreement–within an error of 7.4% – with the experimental data. An increase in the self-diffusion coefficients with the inclusion of a Pt surface has been observed. The estimation of the diffusion coefficients of both water and ethanol in the presence of a Pt surface shows that they obey the Arrhenius equation;the calculated activation energies of diffusion of ethanol and water are 2.47 and 2.98 Kcal/mole, respectively. The radial distribution function graphs and density profiles have been built;their correlations with the self-diffusion coefficients of both ethanol and water molecules are also illustrated.展开更多
This study demonstrated the interaction mechanism of collagen peptides(CPs)with 4-ethylphenol(4-EP),phenol,guaiacol,and 4-ethylguaiacol(4-EG)in the ethanol-water solution.The ultraviolet visible spectroscopy,zeta pote...This study demonstrated the interaction mechanism of collagen peptides(CPs)with 4-ethylphenol(4-EP),phenol,guaiacol,and 4-ethylguaiacol(4-EG)in the ethanol-water solution.The ultraviolet visible spectroscopy,zeta potential tests and hydrogen nuclear magnetic spectroscopy manifested that CPs interacted with the phenolic compounds.Meanwhile,Isothermal titration calorimetry determination indicated that the CPs was hydrogen bonded with 4-EP in 52%(v/v)ethanol-water solution,while the hydrophobic forces played a major role in the interaction of CPs with guaiacol and 4-EG,respectively.Moreover,hydrogen and hydrophobic bonds were involved in the interaction between CPs and phenol.Finally,Head Space-solid Phase Microextraction Gas Chromatography Mass Spectrometry analysis indicated that the content of phenolic compounds in model solution efficiently decreased with the presence of CPs.In the real liquor,it was found that the content of volatile compounds(including phenolic compounds)was obviously decreased after CPs added.展开更多
基金Project(21707056) supported by the National Natural Science Foundation of ChinaProject(20151BAB213024) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ14302) supported by the Scientific Research Fund of Jiangxi Provincial Education Department,China
文摘Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation behaviors of heavy metals(HMs)contained in raw SS is a key issue on the safety and cleanness of above liquefaction process,which is explored in this study.The results show that pure ethanol facilitates the migration of HMs into biochar products.Pure water yields lower percentages of HMs in mobile/bioavailable speciation.Compared with sole solvent treatment,ethanol-water cosolvent causes a random/average effect on the distribution/transformation behaviors of HMs.After liquefaction of SS in pure water,the contamination degree of HMs is mitigated from high level(25.8(contamination factor))in raw SS to considerable grade(13.4)in biochar and the ecological risk is mitigated from moderate risk(164.5(risk index))to low risk(78.8).Liquefaction of SS in pure ethanol makes no difference to the pollution characteristics of HMs.The combined use of ethanol and water presents similar immobilization effects on HMs to pure water treatment.The contamination factor and risk index of HMs in biochars obtained in ethanol-water cosolvent treatment are 13.1-14.6(considerable grade)and 79.3-101.0(low risk),respectively.In order to further control the pollution of HMs,it is preferentially suggested to improve the liquefaction process of SS in ethanol-water mixed solvents by introducing conventional lignocellulosic/algal biomass,also known as co-liquefaction treatment.
基金the Key Scientific and Technological Project of Sichuan Province(No.03GG021-002)
文摘Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlapping plate-like, hexagonal star-like, dumbbell-like, etc. can be synthesized in the ethanol-water mixtures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrograph (FT-IR). The interrelated effect mechanism is presented in the end. Results show that the modifier carboxyl groups play a significant role in controlling the SrCO3 crystal morphologies, which can alter the crystal growth unit (Sr^2+) supply mode and induce the crystal formation with the morphologies matching their spatial configurations.
文摘The steady-state fluorescence spectrum characteristic of ethanol-water excimer has been studied in this paper. By analysing the features of the sharp emission spectrum with fine structures in a shortwave band and the characteristics of the broad and featureless fluorescence peaks in the longwave band, one can conclude that the excimers are formed between the new ethanol-water cluster molecules in the excited state and the ground state through the interaction among different chromophores. The excitation spectra in the two fluorescence bands have been studied, and their emission mechanisms have been ascertained based on the energy transfer theory. Furthermore, the critical distance of the resonance energy transfer has been calculated.
基金Supported by the Independent Innovation Foundation of Tianjin University(No.2010XY-0013)
文摘Ethanol-water near-azeotropic mixture dehydration was investigated by formulated compound starchbased adsorbent(CSA), which consists of corn, sweet potato and foaming agent. The net retention time and separation factor of water over ethanol were measured by inverse gas chromatography(IGC). Results indicated that water has a longer net retention time than ethanol and that low temperature is beneficial to this dehydration process. Orthogonal test was conducted under different vapor feed flow rates, bed temperatures and bed heights, to obtain optimal fixed-bed dehydration condition. Dynamic saturated adsorbance was also studied. It was found that CSA has the same water adsorption capacity(0.15 g/g)as some commercial molecular sieves. Besides, this biosorptive dehydration process was found to be the most energy-efficient compared with other ethanol purification processes.
文摘The cementation reaction of copper on zinc metal in solutions of different concentrations ofcopper sulphate, at 25℃, has been studied and it is found to be a first order reaction. Moreover,the rates of this reaction at 0.15 mol'L-1 copper sulphate solution have been measured in a varietyof ethanol-water media at temperatures from 20℃ to 40℃. The correlation between the masstransfer coefficient and the dielectric constant has been investigated. Also, the thermodynamicparameters of activation have been calculated. The isokinetic relationship reveals the existenceof compensation effect, where the solute-solvent interactions play an important role.
文摘Four empirical models are tested for fitting the T-y-x equilibrium data of ethanol-water mixture by minimizing the Root Mean Square (RMS) between equilibrium data and theoretical points. The total pressure of the correspondent data is 101.3 kPa. All models parameters are also identified. The study suggests that NRTL model fits the equilibrium data best with RMS = 0.4 %.
文摘This use of biomass-based adsorbent has been explored for the column study of the adsorptive dehydration of water in ethanol-water mixtures. The column study was carried out using enzyme modified corn starch and the breakthrough curve parameters were used to design the packed bed column. The effect of flow rate on the breakthrough curves revealed that adsorption efficiency decreased with increased inflow rate. The empty bed contact time (τ) of the pilot plant packed column was 35.35 min while the breakthrough time is 40.78 min. 66.7% was the fraction of capacity left unused for the pilot plant from the design.
文摘An analysis of the molecular dynamics of ethanol solvated by water molecules in the absence and presence of a Pt surface has been performed using DL_POLY_2.19 code. The structure and diffusion properties of an ethanol–water system have been studied at various temperatures from 250 to 600 K. We have measured the self-diffusion coefficients of the 50:50% ethanol–water solution;in the absence of a Pt surface our results show an excellent agreement–within an error of 7.4% – with the experimental data. An increase in the self-diffusion coefficients with the inclusion of a Pt surface has been observed. The estimation of the diffusion coefficients of both water and ethanol in the presence of a Pt surface shows that they obey the Arrhenius equation;the calculated activation energies of diffusion of ethanol and water are 2.47 and 2.98 Kcal/mole, respectively. The radial distribution function graphs and density profiles have been built;their correlations with the self-diffusion coefficients of both ethanol and water molecules are also illustrated.
基金The National Key R&D Program of China(2017YFB0308500).
文摘This study demonstrated the interaction mechanism of collagen peptides(CPs)with 4-ethylphenol(4-EP),phenol,guaiacol,and 4-ethylguaiacol(4-EG)in the ethanol-water solution.The ultraviolet visible spectroscopy,zeta potential tests and hydrogen nuclear magnetic spectroscopy manifested that CPs interacted with the phenolic compounds.Meanwhile,Isothermal titration calorimetry determination indicated that the CPs was hydrogen bonded with 4-EP in 52%(v/v)ethanol-water solution,while the hydrophobic forces played a major role in the interaction of CPs with guaiacol and 4-EG,respectively.Moreover,hydrogen and hydrophobic bonds were involved in the interaction between CPs and phenol.Finally,Head Space-solid Phase Microextraction Gas Chromatography Mass Spectrometry analysis indicated that the content of phenolic compounds in model solution efficiently decreased with the presence of CPs.In the real liquor,it was found that the content of volatile compounds(including phenolic compounds)was obviously decreased after CPs added.