A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as...A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.展开更多
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ...As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.展开更多
The pedestrian timing at signalized intersections is studied aiming at the problems of the inconsistency of the vehicular and pedestrian timing requirements and the insufficiency of pedestrian clearance. Based on the ...The pedestrian timing at signalized intersections is studied aiming at the problems of the inconsistency of the vehicular and pedestrian timing requirements and the insufficiency of pedestrian clearance. Based on the formulae of WALK and flashing DON'T WALK (FDW) in the highway capacity manual (HCM), the relationship between pedestrian signal indications and vehicular signal indications is discussed using the theory of traffic flow. Then, methods of pedestrian timing for different cases are established, particularly the methods of the pedestrian green adjustment. Ways of pedestrian crossing are analyzed for roadways with different forms and widths of the median island. The sampling values of calculation parameters are studied, and the recommended formulae of pedestrian timing for different conditions are presented.展开更多
A real extended scene and moving targets multi-channel Synthetic Aperture Radar(SAR) raw signal simulator accounting for Inertial Navigation System(INS) errors and antenna patterns is presented in this paper. INS erro...A real extended scene and moving targets multi-channel Synthetic Aperture Radar(SAR) raw signal simulator accounting for Inertial Navigation System(INS) errors and antenna patterns is presented in this paper. INS errors are obtained by solving INS error differential equations with Runge-Kutta method. A high resolution SAR image is used to estimate the complex reflectance of real extended scene. Extended scene and moving target are simulated separately and then are superposed in time domain. The simulated multi-channel SAR data can be used for development of multi-channel SAR Ground Moving Target Indication(SAR-GMTI) and also can be used for development of SAR motion compensation.展开更多
针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统...针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。展开更多
3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率...3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率带来了可能性。然而,现有基于MDT技术的网络覆盖度量方法严重依赖GPS提供的位置坐标,但全球定位系统(GPS,global positioning system)不能提供室内精准定位,无法用于室内Wi-Fi网络的覆盖度量。为此,提出了一种不依赖位置坐标的RSSI聚类方法,充分利用室内相近位置RSSI的统计相似性,区分不同位置的RSSI测量差异,在无位置坐标条件下准确估计出室内Wi-Fi网络的覆盖率。实验结果表明,所提方法估计的覆盖率与基于真实位置坐标测量的覆盖率相近,度量准确度明显优于现有的其他方法。展开更多
针对传统无线定位问题中基于接收信号强度指示(Received Signal Strength Indicator,RSSI)的测距与定位方法精度过于依赖RSSI测距精度,以至于提升定位精度成本较大的问题,提出了基于深度学习与信息交互的第5代移动通信技术(5G)终端群组...针对传统无线定位问题中基于接收信号强度指示(Received Signal Strength Indicator,RSSI)的测距与定位方法精度过于依赖RSSI测距精度,以至于提升定位精度成本较大的问题,提出了基于深度学习与信息交互的第5代移动通信技术(5G)终端群组定位方法,以降低其对基站与终端间RSSI测距精度的依赖。在5G终端群组条件下,基于终端间的相互测距信息,利用终端间测距误差较小的特点来弥补基站与终端间RSSI测距的误差,并结合深度神经网络,将接收到的RSSI信号作为输入特征、位置信息作为输出特征,进行模型训练并输出5G终端群组定位结果,使得最终定位精度得到有效提升。仿真试验验证了所提出方法的有效性。展开更多
基金supported by the National Basic Research Program of China (973Program) under Grant No. 2010CB731800the National Natural Science Foundation of China under Grant No. 60934003 and 61074065the Key Project for Natural Science Research of Hebei Education Departmentunder Grant No. ZD200908
文摘A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.
基金supported by the National Natural Science Foundation of China(61771154)the Fundamental Research Funds for the Central Universities(3072022CF0601)supported by Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin,China.
文摘As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
基金The National Natural Science Foundation of China(No50378016)
文摘The pedestrian timing at signalized intersections is studied aiming at the problems of the inconsistency of the vehicular and pedestrian timing requirements and the insufficiency of pedestrian clearance. Based on the formulae of WALK and flashing DON'T WALK (FDW) in the highway capacity manual (HCM), the relationship between pedestrian signal indications and vehicular signal indications is discussed using the theory of traffic flow. Then, methods of pedestrian timing for different cases are established, particularly the methods of the pedestrian green adjustment. Ways of pedestrian crossing are analyzed for roadways with different forms and widths of the median island. The sampling values of calculation parameters are studied, and the recommended formulae of pedestrian timing for different conditions are presented.
文摘A real extended scene and moving targets multi-channel Synthetic Aperture Radar(SAR) raw signal simulator accounting for Inertial Navigation System(INS) errors and antenna patterns is presented in this paper. INS errors are obtained by solving INS error differential equations with Runge-Kutta method. A high resolution SAR image is used to estimate the complex reflectance of real extended scene. Extended scene and moving target are simulated separately and then are superposed in time domain. The simulated multi-channel SAR data can be used for development of multi-channel SAR Ground Moving Target Indication(SAR-GMTI) and also can be used for development of SAR motion compensation.
文摘针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。
文摘3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率带来了可能性。然而,现有基于MDT技术的网络覆盖度量方法严重依赖GPS提供的位置坐标,但全球定位系统(GPS,global positioning system)不能提供室内精准定位,无法用于室内Wi-Fi网络的覆盖度量。为此,提出了一种不依赖位置坐标的RSSI聚类方法,充分利用室内相近位置RSSI的统计相似性,区分不同位置的RSSI测量差异,在无位置坐标条件下准确估计出室内Wi-Fi网络的覆盖率。实验结果表明,所提方法估计的覆盖率与基于真实位置坐标测量的覆盖率相近,度量准确度明显优于现有的其他方法。
文摘针对传统无线定位问题中基于接收信号强度指示(Received Signal Strength Indicator,RSSI)的测距与定位方法精度过于依赖RSSI测距精度,以至于提升定位精度成本较大的问题,提出了基于深度学习与信息交互的第5代移动通信技术(5G)终端群组定位方法,以降低其对基站与终端间RSSI测距精度的依赖。在5G终端群组条件下,基于终端间的相互测距信息,利用终端间测距误差较小的特点来弥补基站与终端间RSSI测距的误差,并结合深度神经网络,将接收到的RSSI信号作为输入特征、位置信息作为输出特征,进行模型训练并输出5G终端群组定位结果,使得最终定位精度得到有效提升。仿真试验验证了所提出方法的有效性。