This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the ferm...This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the fermentation mash and its effects on EC levels. The results showed a significant reduction in EC production that could be attributed to RBE's role in altering urea and citrulline catabolism and inhibiting arginine metabolism, thus preventing EC precursors from reacting with ethanol. Additionally, RBE enhanced the rice wine's flavor profile, as shown by volatile component and amino acid analysis. This study also explored RBE's impact on the metabolism of arginine by Saccharomyces cerevisiae in a simulated fermentation environment, and found increased arginine, reduced urea and citrulline levels, altered enzyme activities, and gene expression changes in the arginine metabolism and transport pathways. In conclusion, the results clearly demonstrated RBE's efficacy in reducing the EC content in Chinese rice wine, offering valuable insights for EC reduction strategies.展开更多
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa...Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.展开更多
Thermotropic liquid crystalline VHE terpolyesters made from vanillic acid (V),p-hydroxybenzoic acid (H) and poly(ethylene terephthalate) (E) were studied by 400 MHz NMR spectra, wide angle X-ray diffraction,scanning e...Thermotropic liquid crystalline VHE terpolyesters made from vanillic acid (V),p-hydroxybenzoic acid (H) and poly(ethylene terephthalate) (E) were studied by 400 MHz NMR spectra, wide angle X-ray diffraction,scanning electron and polarizing microscopes.It was found that the VHE terpolyesters had random sequence distribution.The VHE terpolyester films exhibited highly oriented fibrillar structure.展开更多
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we...Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.展开更多
Three coordination polymers[Mn(epda)(2,2'⁃bipy)(H_(2)O)](1),[Mn(epda)(phen)](2),and[Co_(2)(epda)2(bpe)2(H_(2)O)_(4)]·5H_(2)O(3)(H2epda=5⁃ethyl⁃pyridine⁃2,3⁃dicarboxylic acid,2,2'⁃bipy=2,2'⁃bipyridine,...Three coordination polymers[Mn(epda)(2,2'⁃bipy)(H_(2)O)](1),[Mn(epda)(phen)](2),and[Co_(2)(epda)2(bpe)2(H_(2)O)_(4)]·5H_(2)O(3)(H2epda=5⁃ethyl⁃pyridine⁃2,3⁃dicarboxylic acid,2,2'⁃bipy=2,2'⁃bipyridine,phen=phenanthroline,bpe=1,2⁃bis(4⁃pyridyl)ethylene)were synthesized by solvothermal reactions and characterized by single⁃crystal X⁃ray diffraction,thermogravimetric analyses,IR spectroscopy and elemental analysis.1 displays a 1D chain struc⁃ture,and these chains are joined by O-H…O hydrogen bonding andπ⁃πstacking interactions to generate a 2D layer structure.2 displays a 2D layer structure,and adjacent layers are generated 3D architecture throughπ⁃πstacking interactions.3 displays a 1D chain structure,and adjacent chains are generated double layer structure through O-H…O hydrogen bonding.The fluorescent properties of 1 and 3 indicate that they can potentially be used as a luminescent sensor.1 was highly selective and sensitive towards o⁃nitrophenol through different detection mechanisms,however,3 was highly selective and sensitive towards 2,4,6⁃trinitrophenol.In addition,the magnetic behavior of 2 has also been investigated.CCDC:2172533,1,2355773,2,2355774,3.展开更多
Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area o...Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area of 99.03 m2/g with a pore size of 7.8 nm. Scanning electron microscopy (SEM) and particle size distribution reveal that the diameters of the formed pellets are uniform. Thermogravimetry (TG) analysis result shows that 500 ℃ could be the appropriate temperature for converting Ni(HCO3)2 precursors into NiO via a thermal decomposition process. CO2 and NH3 temperature-programmed desorption results show that Ni(HCO3)2 has explicit acid-base sites. Transmission electron microscopy (TEM) results vividly indicate that the pellets are aggregated by hexagonal platelets and possess porous structures. Ni(HCO3)2 can efficiently catalyze the one-step synthesis of benzoin ethyl ether from benzaldehyde and ethanol, with the conversion ofbenzaldehyde up to 57.5% and nearly 100% selectivity of benzoin ethyl ether.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
In order to study the effects of ethyl pyruvate on cardiomyocyte apoptosis following ischemia/reperfusion (I/R) in vitro and the expression of Bcl-2 and Bax proteins, isolated rat hearts were perfused in a Langendor...In order to study the effects of ethyl pyruvate on cardiomyocyte apoptosis following ischemia/reperfusion (I/R) in vitro and the expression of Bcl-2 and Bax proteins, isolated rat hearts were perfused in a Langendorff model. Twenty-four rats were randomly divided into 3 groups (n=8 in each group): control group was perfused for 120 min. In the I/R group, after 30 min stabilization the injury was induced by 30 min global ischemia followed by 60 min reperfusion. Ethyl pyruvate (EP) group was set up with the same protocol as I/R group except that it was supplied with 2 mmol/L EP 15 rain before ischemia and throughout reperfusion. Myocardial malonaldehyde (MDA) content was measured. Myocardial apoptotic index (AI) was tested by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) method. The expression of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in cardiac myocytes was detected by immunohistochemistry. As compared with control group, the content of MDA, myocardial AI and the expression of Bcl-2, Bax proteins were increased significantly in I/R group, but the content of MDA, myocardial AI and the expression of Bax protein were decreased obviously and the expression of Bcl-2 protein was up-regulated in EP group (P〈0.05). These results demonstrate that EP could inhibit apoptosis of cardiac myocytes possibly via alleviating oxidative stress, up-regulating Bcl-2 and down-regulating Bax proteins.展开更多
A novel porphyrin-Schiff base was synthesized via the condensation of 5-(4-aminophenyl) -10,15,20-triphenylperphyrin and ethyl vanillin. After analyzing the level of purification of the perphyrin-Schiff base, it was...A novel porphyrin-Schiff base was synthesized via the condensation of 5-(4-aminophenyl) -10,15,20-triphenylperphyrin and ethyl vanillin. After analyzing the level of purification of the perphyrin-Schiff base, it was successfully separated. This perphyrin-Schiff base was characterized by using UV-Vis, IR,^1H NMR and MS spectroscopy.展开更多
基金supported by the National Natural Science Foundation of China(32202125)the Science and Technology Plan Project of Shaoxing City,China(2022A12003)the Zhejiang Provincial Natural Science Foundation,China(LY24C200004).
文摘This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the fermentation mash and its effects on EC levels. The results showed a significant reduction in EC production that could be attributed to RBE's role in altering urea and citrulline catabolism and inhibiting arginine metabolism, thus preventing EC precursors from reacting with ethanol. Additionally, RBE enhanced the rice wine's flavor profile, as shown by volatile component and amino acid analysis. This study also explored RBE's impact on the metabolism of arginine by Saccharomyces cerevisiae in a simulated fermentation environment, and found increased arginine, reduced urea and citrulline levels, altered enzyme activities, and gene expression changes in the arginine metabolism and transport pathways. In conclusion, the results clearly demonstrated RBE's efficacy in reducing the EC content in Chinese rice wine, offering valuable insights for EC reduction strategies.
基金This work was supported financially by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced program,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.
文摘Thermotropic liquid crystalline VHE terpolyesters made from vanillic acid (V),p-hydroxybenzoic acid (H) and poly(ethylene terephthalate) (E) were studied by 400 MHz NMR spectra, wide angle X-ray diffraction,scanning electron and polarizing microscopes.It was found that the VHE terpolyesters had random sequence distribution.The VHE terpolyester films exhibited highly oriented fibrillar structure.
基金supported by the National Science Foundation of China(21776268,21721004,22108274 and 22378383)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21060200)support provided by Shanxi Yanchang Petroleum(Group)Co.,Ltd.(yc-hw-2022ky-02).
文摘Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.
文摘Three coordination polymers[Mn(epda)(2,2'⁃bipy)(H_(2)O)](1),[Mn(epda)(phen)](2),and[Co_(2)(epda)2(bpe)2(H_(2)O)_(4)]·5H_(2)O(3)(H2epda=5⁃ethyl⁃pyridine⁃2,3⁃dicarboxylic acid,2,2'⁃bipy=2,2'⁃bipyridine,phen=phenanthroline,bpe=1,2⁃bis(4⁃pyridyl)ethylene)were synthesized by solvothermal reactions and characterized by single⁃crystal X⁃ray diffraction,thermogravimetric analyses,IR spectroscopy and elemental analysis.1 displays a 1D chain struc⁃ture,and these chains are joined by O-H…O hydrogen bonding andπ⁃πstacking interactions to generate a 2D layer structure.2 displays a 2D layer structure,and adjacent layers are generated 3D architecture throughπ⁃πstacking interactions.3 displays a 1D chain structure,and adjacent chains are generated double layer structure through O-H…O hydrogen bonding.The fluorescent properties of 1 and 3 indicate that they can potentially be used as a luminescent sensor.1 was highly selective and sensitive towards o⁃nitrophenol through different detection mechanisms,however,3 was highly selective and sensitive towards 2,4,6⁃trinitrophenol.In addition,the magnetic behavior of 2 has also been investigated.CCDC:2172533,1,2355773,2,2355774,3.
基金Project(50872086)supported by the National Natural Science Foundation of ChinaProject(2012021006-3)supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(2012L022)supported by Special/Youth Foundation of Taiyuan University of Technology,ChinaProject(20120321033-02)supported by Science and Technology Research of Shanxi Province,China
文摘Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area of 99.03 m2/g with a pore size of 7.8 nm. Scanning electron microscopy (SEM) and particle size distribution reveal that the diameters of the formed pellets are uniform. Thermogravimetry (TG) analysis result shows that 500 ℃ could be the appropriate temperature for converting Ni(HCO3)2 precursors into NiO via a thermal decomposition process. CO2 and NH3 temperature-programmed desorption results show that Ni(HCO3)2 has explicit acid-base sites. Transmission electron microscopy (TEM) results vividly indicate that the pellets are aggregated by hexagonal platelets and possess porous structures. Ni(HCO3)2 can efficiently catalyze the one-step synthesis of benzoin ethyl ether from benzaldehyde and ethanol, with the conversion ofbenzaldehyde up to 57.5% and nearly 100% selectivity of benzoin ethyl ether.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
文摘In order to study the effects of ethyl pyruvate on cardiomyocyte apoptosis following ischemia/reperfusion (I/R) in vitro and the expression of Bcl-2 and Bax proteins, isolated rat hearts were perfused in a Langendorff model. Twenty-four rats were randomly divided into 3 groups (n=8 in each group): control group was perfused for 120 min. In the I/R group, after 30 min stabilization the injury was induced by 30 min global ischemia followed by 60 min reperfusion. Ethyl pyruvate (EP) group was set up with the same protocol as I/R group except that it was supplied with 2 mmol/L EP 15 rain before ischemia and throughout reperfusion. Myocardial malonaldehyde (MDA) content was measured. Myocardial apoptotic index (AI) was tested by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) method. The expression of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in cardiac myocytes was detected by immunohistochemistry. As compared with control group, the content of MDA, myocardial AI and the expression of Bcl-2, Bax proteins were increased significantly in I/R group, but the content of MDA, myocardial AI and the expression of Bax protein were decreased obviously and the expression of Bcl-2 protein was up-regulated in EP group (P〈0.05). These results demonstrate that EP could inhibit apoptosis of cardiac myocytes possibly via alleviating oxidative stress, up-regulating Bcl-2 and down-regulating Bax proteins.
基金the National Natural Science Foundation of China(No 59783001)
文摘A novel porphyrin-Schiff base was synthesized via the condensation of 5-(4-aminophenyl) -10,15,20-triphenylperphyrin and ethyl vanillin. After analyzing the level of purification of the perphyrin-Schiff base, it was successfully separated. This perphyrin-Schiff base was characterized by using UV-Vis, IR,^1H NMR and MS spectroscopy.