Novel thermo-responsive cellulose papers were prepared via grafting poly(di(ethylene glycol)methyl ether methacrylate)(PDEGMA)by activators regenerating electron transfer(ARGET)and atom transfer radical polymerization...Novel thermo-responsive cellulose papers were prepared via grafting poly(di(ethylene glycol)methyl ether methacrylate)(PDEGMA)by activators regenerating electron transfer(ARGET)and atom transfer radical polymerization(ATRP).Attenuated total refraction Fourier-transform infrared spectroscopy(ATR-FTIR)and scanning electron microscopy(SEM)measurements of the modified paper showed that PDEGMA brushes were successfully grafted on the paper surface.The thermal stability of the papers before and after grafting was evaluated by thermogravimetric analysis(TGA).The PDEGMA-grafted paper exhibited a two-step thermal degradation process,and presented thermo-responsive characteristics.It was hydrophilic at room temperature but changed rapidly to highly hydrophobic when the temperature rose above 50℃.展开更多
Comb-like acrylic acid poly(ethylene glycol) methyl ether ester (MPEGA)-co-acrylamide (AM) copolymer [P(MPEGA-co-AM)] as novel phase change materials (PCMs) was successfully synthesized via free-radical wate...Comb-like acrylic acid poly(ethylene glycol) methyl ether ester (MPEGA)-co-acrylamide (AM) copolymer [P(MPEGA-co-AM)] as novel phase change materials (PCMs) was successfully synthesized via free-radical water solution polymerization. The structures of P(MPEGA-co-AM) was characterized by Fourier Transform Infrared (FT-lR). The experimental results showed that P(MPEGA-co-AM) copolymer possessed high molecular weight (Mo =66 kg/mol), narrow molecular weight distribution (PDI≈1.14). The phase transition temperature of copolymer decreases to 31℃, which is very much appreciated and urgently needed for smart PCM related to human body. Moreover, P(MPEGA-co-AM) had good thermal stability even at 380℃.展开更多
A novel solid polymer electrolyte with comb-like structure is prepared via a solvent-free UV-cured method.The relationship between conductivity and molecular weight is investigated and revealed.The optimal electrolyte...A novel solid polymer electrolyte with comb-like structure is prepared via a solvent-free UV-cured method.The relationship between conductivity and molecular weight is investigated and revealed.The optimal electrolyte presents a considerably high conductivity of 1.44·10^(-4)S·cm^(-1)at 30℃.Meanwhile,it shows excellent compatibility with metallic lithium and wide electrochemical window(>5 V).To investigate the safety and cycling performance,the coin cell and soft package battery are assembled respectively.The LiFePO_(4)/Li coin cells exhibit initial discharge specific capacities of 163.2,147.7,137.3 and 108.7 mA·h·g^(-1)at 0.1,0.2,0.5 and 1C under 60℃,respectively.Notably,when the coin cells work at 30℃,the initial discharge specific capacities at 0.05,0.1,0.2 and 0.5C are 140.5,133.5,107.7 and 55.6 mA·h·g^(-1).Significantly,a 3.5 cm×7 cm solid-state soft pack battery is fabricated and cycling at 30℃.The first discharge capacity reaches to 137.5 mA·h·g^(-1)and the capacity retention is as high as 84.4%after 100 cycles at 0.2C and remain 95.5%after 100 cycles at 0.5C,respectively.These results shows a promising solid polymer electrolyte for solid-state batteries with good cycling and safety performance.展开更多
基金supported by the National Natural Science Foundation of China (No.31200453,31200454)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Novel thermo-responsive cellulose papers were prepared via grafting poly(di(ethylene glycol)methyl ether methacrylate)(PDEGMA)by activators regenerating electron transfer(ARGET)and atom transfer radical polymerization(ATRP).Attenuated total refraction Fourier-transform infrared spectroscopy(ATR-FTIR)and scanning electron microscopy(SEM)measurements of the modified paper showed that PDEGMA brushes were successfully grafted on the paper surface.The thermal stability of the papers before and after grafting was evaluated by thermogravimetric analysis(TGA).The PDEGMA-grafted paper exhibited a two-step thermal degradation process,and presented thermo-responsive characteristics.It was hydrophilic at room temperature but changed rapidly to highly hydrophobic when the temperature rose above 50℃.
文摘Comb-like acrylic acid poly(ethylene glycol) methyl ether ester (MPEGA)-co-acrylamide (AM) copolymer [P(MPEGA-co-AM)] as novel phase change materials (PCMs) was successfully synthesized via free-radical water solution polymerization. The structures of P(MPEGA-co-AM) was characterized by Fourier Transform Infrared (FT-lR). The experimental results showed that P(MPEGA-co-AM) copolymer possessed high molecular weight (Mo =66 kg/mol), narrow molecular weight distribution (PDI≈1.14). The phase transition temperature of copolymer decreases to 31℃, which is very much appreciated and urgently needed for smart PCM related to human body. Moreover, P(MPEGA-co-AM) had good thermal stability even at 380℃.
基金The work was supported by funding from National Key Research and Development Program of China(Grant No.2016YFB0100105)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2017342)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ16E020003,LY18E020018,LY18E030011,LD18E020004)Natural Science Foundation of Ningbo(Grant No.2018A610012,2018A610010).
文摘A novel solid polymer electrolyte with comb-like structure is prepared via a solvent-free UV-cured method.The relationship between conductivity and molecular weight is investigated and revealed.The optimal electrolyte presents a considerably high conductivity of 1.44·10^(-4)S·cm^(-1)at 30℃.Meanwhile,it shows excellent compatibility with metallic lithium and wide electrochemical window(>5 V).To investigate the safety and cycling performance,the coin cell and soft package battery are assembled respectively.The LiFePO_(4)/Li coin cells exhibit initial discharge specific capacities of 163.2,147.7,137.3 and 108.7 mA·h·g^(-1)at 0.1,0.2,0.5 and 1C under 60℃,respectively.Notably,when the coin cells work at 30℃,the initial discharge specific capacities at 0.05,0.1,0.2 and 0.5C are 140.5,133.5,107.7 and 55.6 mA·h·g^(-1).Significantly,a 3.5 cm×7 cm solid-state soft pack battery is fabricated and cycling at 30℃.The first discharge capacity reaches to 137.5 mA·h·g^(-1)and the capacity retention is as high as 84.4%after 100 cycles at 0.2C and remain 95.5%after 100 cycles at 0.5C,respectively.These results shows a promising solid polymer electrolyte for solid-state batteries with good cycling and safety performance.