The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to ...The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to its high propylene content, EPDM is compatible with i-PP to some degree. The interaction between the two components was strengthened. As expected, for partially compatible system the glass transition temperature of i-PP in the blends shifted to lower temperature. It was found that there existed two transitions, αEPDM and βEPDM, for the EPDM used in this work. The former was considered to be the glass transition of the random chain segments of EPDM, while the latter the local motion of the long ethylene sequences in EPDM. The unusual transition behaviour of αEPDM in the blends was explained in terms of the greater thermal expansion of EPDM and the compatibility of the two components. On the other hand, the βEPDM changed with the composition of the blends in a regular manner.展开更多
基金This Paper was presented before the Symposium on Polymers,Chengdu,P.R.China.Nov,14-18,1989
文摘The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to its high propylene content, EPDM is compatible with i-PP to some degree. The interaction between the two components was strengthened. As expected, for partially compatible system the glass transition temperature of i-PP in the blends shifted to lower temperature. It was found that there existed two transitions, αEPDM and βEPDM, for the EPDM used in this work. The former was considered to be the glass transition of the random chain segments of EPDM, while the latter the local motion of the long ethylene sequences in EPDM. The unusual transition behaviour of αEPDM in the blends was explained in terms of the greater thermal expansion of EPDM and the compatibility of the two components. On the other hand, the βEPDM changed with the composition of the blends in a regular manner.