The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potent...The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potentials were studied and compared at a water/cyclohexane model interface using a droplet tensiometer (Tracker Teclis, Longessaigne, France). The progressive interfacial adsorption of the NPs in the aqueous phase was monitored by tensiometry. The model interface was maintained and observed in a drop tensiometer, analyzed via axisymmetric drop shape analysis (ADSA), to determine the interfacial properties. Given the direct relationship between the stability of Pickering emulsions (emulsions stabilized by solid nanoparticles) and the interfacial properties of these layers, different nanoparticle systems were compared. Specifically, Eudragit NPs of different sizes were examined. Moreover, the reduction of the Zeta potential with PEG-6000 induces partial aggregation of the NPs (referred to as NP flocs), significantly impacting the stability of the interfacial layer. Dynamic surface tension measurements indicate a significant decrease in interfacial tension with Eudragit® nanoparticles (NPs). This reduction correlates with the size of the NPs, highlighting that this parameter does not operate in isolation. Other factors, such as the contact angle and wettability of the nanoparticles, also play a critical role. Notably, larger NPs further diminished the interfacial tension. This study enhances our understanding of the stability of Pickering emulsions stabilized by Eudragit® L100 polymeric nanoparticles.展开更多
Sustained release Eudragit RL/RS microspheres encapsulating nifedipine were prepared using the acetone/liquid paraffin emulsion solvent evaporation method. The influence of different preparation factors on release o...Sustained release Eudragit RL/RS microspheres encapsulating nifedipine were prepared using the acetone/liquid paraffin emulsion solvent evaporation method. The influence of different preparation factors on release of the drug in vitro was investigated. The release rate of nifedipine from the microspheres increased with increasing Eudragit RL/RS ratio and stirring rate during the preparation, and with decreasing the polymer concentration of internal phase and microsphere size. It was found that a linear relationship existed between the microsphere size and the time of 50% drug release. The drug release rate increased with increasing nifedipine content from 4.2 to 16.7% and was more rapid than the dissolution rate of pure nifedipine particles. However, the release rate of the microspheres with 26.6% drug content decreased significantly and was slower than the dissolution rate of pure drug particles. This was attributed mainly to the nifedipine dispersion state in the microspheres as confirmed by the differential thermal analysis and X ray diffraction study, which showed that nifedipine was present in an amorphous or molecular state in the microspheres with 4.2, 9.4 and 16.7% drug, whereas partly in the crystalline state in the microspheres with 26.6% drug. The amounts released for less than 70% nifedipine can be fitted to Higuchi square root of time model, independent of polymer ratio, drug content and microsphere size.展开更多
The purpose of this study was to develop the immediate release stomach-specific spraydried formulation of valsartan(VAL) using Eudragit?E PO(EPO) as the carrier for enhancing dissolution rate in a gastric environment....The purpose of this study was to develop the immediate release stomach-specific spraydried formulation of valsartan(VAL) using Eudragit?E PO(EPO) as the carrier for enhancing dissolution rate in a gastric environment. Enhanced solubility and dissolution in gastric pH was achieved by formulating the solid dispersion using a spray drying technique. Different combinations of drug–polymer–surfactant were dissolved in 10% ethanol solution and spraydried in order to obtain solid dispersion microparticles. Use of the VAL–EPO solid dispersion microparticles resulted in significant improvement of the dissolution rate of the drug at pH 1.2 and pH 4.0, compared to the free drug powder and the commercial product. A hard gelatin capsule was filled with the VAL–EPO solid dispersion powder prior to the dissolution test.The increased dissolution of VAL from solid dispersion microparticles in gastric pH was attributed to the effect of EPO and most importantly the transformation of crystalline drugs to amorphous solid dispersion powder, which was clearly shown by scanning electron microscopy(SEM), differential scanning calorimetry(DSC), and powder X-ray diffraction(PXRD) studies. Thus, VAL, a potential antihypertensive drug in the form of a solid dispersion microparticulate powder, can be effectively delivered in the immediate release dosage form for stomach-specific drug delivery.展开更多
Fungal keratitis and endopthalmitis are serious eye diseases.Fluconazole(FL)is indicated for their treatment,but suffers from poor topical ocular availability.This study was intended to improve and prolong its ocular ...Fungal keratitis and endopthalmitis are serious eye diseases.Fluconazole(FL)is indicated for their treatment,but suffers from poor topical ocular availability.This study was intended to improve and prolong its ocular availability.FL niosomal vesicles were prepared using span 60.Also,polymeric nanoparticles were prepared using cationic Eudragit RS100 and Eudragit RL100.The investigated particles had adequate entrapment efficiency(EE%),nanoscale particle size and high zeta potential.Subsequently,formulations were optimized using full factorial design.FL-HP-β-CD complex was encapsulated in selected Eudragit nanoprticles(FL-CD-ERS1)and niosmal vesicles.The niosomes were further coated with cationic and bioadhesive chitosan(FL-CD-Nios-ch).EE%for FL-CD-ERS1 and FL-CD-Niosch formulations were 76.4%and 61.7%;particle sizes were 151.1 and 392 nm;also,they exhibited satisfactory zeta potential+40.1 and+28.5 m V.In situ gels were prepared by poloxamer P407,HPMC and chitosan and evaluated for gelling capacity,rheological behavior and gelling temperature.To increase the precorneal residence time,free drug and selected nano-formulations were incorporated in the selected in situ gel.Release study revealed sustained release within 24 h.Permeation through excised rabbits corneas demonstrated enhanced drug flux and large AUC0-6 h in comparison to plain drug.Corneal permeation of selected formulations labeled with Rhodamine B was visualized by Confocal laser microscopy.Histopathological study and in vivo tolerance test evidenced safety.In vivo susceptibility test using Candida albicans depicted enhanced growth inhibition and sustained effect.In this study the adopted stepwise optimization strategy combined cylodextrin complexation,drug nano-encapsulation and loading within thermosenstive in situ gel.Finally,the developed innovated formulations displayed boosted corneal permeation,enhanced antifungal activity and prolonged action.展开更多
Solvent exchange induced in situ forming gel(ISG) is the promising drug delivery system for periodontitis treatment owing to the prospect of maintaining an effective high drug level in the gingival crevicular fluid. I...Solvent exchange induced in situ forming gel(ISG) is the promising drug delivery system for periodontitis treatment owing to the prospect of maintaining an effective high drug level in the gingival crevicular fluid. In the present study, the influence of clove oil(CO) on the characteristics of doxycycline hyclate(DH)-loaded ISG comprising Eudragit RS(ERS) was investigated including viscosity/rheology, syringeability, in vitro gel formation/drug release, matrix formation/solvent diffusion and antimicrobial activities. CO could dissolve ERS and increase the viscosity of ISG and its hydrophobicity could also retard the diffusion of solvent and hinder the drug diffusion; thus, the minimization of burst effect and sustained drug release were achieved effectively. All the prepared ISGs comprising CO could expel through the 27-gauge needle for administration by injection and transform into matrix depot after exposure to the simulated gingival crevicular fluid. The antimicrobial activities against Staphylococcus aureus, Escherichia coli, Streptococcus mutans and Porphyromonas gingivalis were increased when the ratio of CO and N-methyl pyrrolidone(NMP) was decreased from 1:1 to 1:10 owing to higher diffusion of DH except that for C. albicans was increased as CO amount was higher.Therefore, CO could minimize the burst while prolonging the drug release of DH-loaded ERS ISG for use as a local drug delivery system for periodontitis treatment.展开更多
The first approved transdermal drug delivery system in the United States in 1979 is a scopolamine patch for treatment of motion sickness. Transdermal drug delivery system has many advantages over oral route such as it...The first approved transdermal drug delivery system in the United States in 1979 is a scopolamine patch for treatment of motion sickness. Transdermal drug delivery system has many advantages over oral route such as it is useful for vomiting and unconscious patients. It can avoid first pass metabolism by the liver. It is non-invasive way and self-administered system compared to injections. The film forming polymeric solutions are a novel transdermal drug delivery system. This system consists of an active drug, film forming polymer, plasticizer.展开更多
文摘The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potentials were studied and compared at a water/cyclohexane model interface using a droplet tensiometer (Tracker Teclis, Longessaigne, France). The progressive interfacial adsorption of the NPs in the aqueous phase was monitored by tensiometry. The model interface was maintained and observed in a drop tensiometer, analyzed via axisymmetric drop shape analysis (ADSA), to determine the interfacial properties. Given the direct relationship between the stability of Pickering emulsions (emulsions stabilized by solid nanoparticles) and the interfacial properties of these layers, different nanoparticle systems were compared. Specifically, Eudragit NPs of different sizes were examined. Moreover, the reduction of the Zeta potential with PEG-6000 induces partial aggregation of the NPs (referred to as NP flocs), significantly impacting the stability of the interfacial layer. Dynamic surface tension measurements indicate a significant decrease in interfacial tension with Eudragit® nanoparticles (NPs). This reduction correlates with the size of the NPs, highlighting that this parameter does not operate in isolation. Other factors, such as the contact angle and wettability of the nanoparticles, also play a critical role. Notably, larger NPs further diminished the interfacial tension. This study enhances our understanding of the stability of Pickering emulsions stabilized by Eudragit® L100 polymeric nanoparticles.
文摘Sustained release Eudragit RL/RS microspheres encapsulating nifedipine were prepared using the acetone/liquid paraffin emulsion solvent evaporation method. The influence of different preparation factors on release of the drug in vitro was investigated. The release rate of nifedipine from the microspheres increased with increasing Eudragit RL/RS ratio and stirring rate during the preparation, and with decreasing the polymer concentration of internal phase and microsphere size. It was found that a linear relationship existed between the microsphere size and the time of 50% drug release. The drug release rate increased with increasing nifedipine content from 4.2 to 16.7% and was more rapid than the dissolution rate of pure nifedipine particles. However, the release rate of the microspheres with 26.6% drug content decreased significantly and was slower than the dissolution rate of pure drug particles. This was attributed mainly to the nifedipine dispersion state in the microspheres as confirmed by the differential thermal analysis and X ray diffraction study, which showed that nifedipine was present in an amorphous or molecular state in the microspheres with 4.2, 9.4 and 16.7% drug, whereas partly in the crystalline state in the microspheres with 26.6% drug. The amounts released for less than 70% nifedipine can be fitted to Higuchi square root of time model, independent of polymer ratio, drug content and microsphere size.
文摘The purpose of this study was to develop the immediate release stomach-specific spraydried formulation of valsartan(VAL) using Eudragit?E PO(EPO) as the carrier for enhancing dissolution rate in a gastric environment. Enhanced solubility and dissolution in gastric pH was achieved by formulating the solid dispersion using a spray drying technique. Different combinations of drug–polymer–surfactant were dissolved in 10% ethanol solution and spraydried in order to obtain solid dispersion microparticles. Use of the VAL–EPO solid dispersion microparticles resulted in significant improvement of the dissolution rate of the drug at pH 1.2 and pH 4.0, compared to the free drug powder and the commercial product. A hard gelatin capsule was filled with the VAL–EPO solid dispersion powder prior to the dissolution test.The increased dissolution of VAL from solid dispersion microparticles in gastric pH was attributed to the effect of EPO and most importantly the transformation of crystalline drugs to amorphous solid dispersion powder, which was clearly shown by scanning electron microscopy(SEM), differential scanning calorimetry(DSC), and powder X-ray diffraction(PXRD) studies. Thus, VAL, a potential antihypertensive drug in the form of a solid dispersion microparticulate powder, can be effectively delivered in the immediate release dosage form for stomach-specific drug delivery.
基金the National Research Centre,Cairo,Egypt for all the facilities and supports。
文摘Fungal keratitis and endopthalmitis are serious eye diseases.Fluconazole(FL)is indicated for their treatment,but suffers from poor topical ocular availability.This study was intended to improve and prolong its ocular availability.FL niosomal vesicles were prepared using span 60.Also,polymeric nanoparticles were prepared using cationic Eudragit RS100 and Eudragit RL100.The investigated particles had adequate entrapment efficiency(EE%),nanoscale particle size and high zeta potential.Subsequently,formulations were optimized using full factorial design.FL-HP-β-CD complex was encapsulated in selected Eudragit nanoprticles(FL-CD-ERS1)and niosmal vesicles.The niosomes were further coated with cationic and bioadhesive chitosan(FL-CD-Nios-ch).EE%for FL-CD-ERS1 and FL-CD-Niosch formulations were 76.4%and 61.7%;particle sizes were 151.1 and 392 nm;also,they exhibited satisfactory zeta potential+40.1 and+28.5 m V.In situ gels were prepared by poloxamer P407,HPMC and chitosan and evaluated for gelling capacity,rheological behavior and gelling temperature.To increase the precorneal residence time,free drug and selected nano-formulations were incorporated in the selected in situ gel.Release study revealed sustained release within 24 h.Permeation through excised rabbits corneas demonstrated enhanced drug flux and large AUC0-6 h in comparison to plain drug.Corneal permeation of selected formulations labeled with Rhodamine B was visualized by Confocal laser microscopy.Histopathological study and in vivo tolerance test evidenced safety.In vivo susceptibility test using Candida albicans depicted enhanced growth inhibition and sustained effect.In this study the adopted stepwise optimization strategy combined cylodextrin complexation,drug nano-encapsulation and loading within thermosenstive in situ gel.Finally,the developed innovated formulations displayed boosted corneal permeation,enhanced antifungal activity and prolonged action.
基金the Research and Development Institute, Silpakorn University (Grant No. SURDI 58/01/38)facilitated by the Faculty of Pharmacy, Silpakorn University, Thailand
文摘Solvent exchange induced in situ forming gel(ISG) is the promising drug delivery system for periodontitis treatment owing to the prospect of maintaining an effective high drug level in the gingival crevicular fluid. In the present study, the influence of clove oil(CO) on the characteristics of doxycycline hyclate(DH)-loaded ISG comprising Eudragit RS(ERS) was investigated including viscosity/rheology, syringeability, in vitro gel formation/drug release, matrix formation/solvent diffusion and antimicrobial activities. CO could dissolve ERS and increase the viscosity of ISG and its hydrophobicity could also retard the diffusion of solvent and hinder the drug diffusion; thus, the minimization of burst effect and sustained drug release were achieved effectively. All the prepared ISGs comprising CO could expel through the 27-gauge needle for administration by injection and transform into matrix depot after exposure to the simulated gingival crevicular fluid. The antimicrobial activities against Staphylococcus aureus, Escherichia coli, Streptococcus mutans and Porphyromonas gingivalis were increased when the ratio of CO and N-methyl pyrrolidone(NMP) was decreased from 1:1 to 1:10 owing to higher diffusion of DH except that for C. albicans was increased as CO amount was higher.Therefore, CO could minimize the burst while prolonging the drug release of DH-loaded ERS ISG for use as a local drug delivery system for periodontitis treatment.
文摘The first approved transdermal drug delivery system in the United States in 1979 is a scopolamine patch for treatment of motion sickness. Transdermal drug delivery system has many advantages over oral route such as it is useful for vomiting and unconscious patients. It can avoid first pass metabolism by the liver. It is non-invasive way and self-administered system compared to injections. The film forming polymeric solutions are a novel transdermal drug delivery system. This system consists of an active drug, film forming polymer, plasticizer.