The green fluorescence of bioluminescent jellyfish Aequorea victoria is due to the presence of the green fluorescent protein (GFP). To examine whether the GFP gene can be applied as a reporter gene in insect cells...The green fluorescence of bioluminescent jellyfish Aequorea victoria is due to the presence of the green fluorescent protein (GFP). To examine whether the GFP gene can be applied as a reporter gene in insect cells, a baculovirus transfer vector containing the neomycin resistance gene (neo) was established. The GFP gene was subcloned into the vector downstream of the polyhedrin gene (ocu) promoter. In the presence of G418, the recombinant virus can be purified. Expression of the GFP gene in the recombinant virus should give rise to synthesis of the GFP with a molecular weight of 30×10 3 dalton, and is observable by the strong green light irradiated by ultraviolet or blue light in viable intact insect cells. The GFP produced in insect cells has typical fluorescent spectra indistinguishable from those of the purified native GFP. The GFP gene as a good reporter gene can be applied to the baculovirus insect cell expression system.展开更多
Objective To construct green fluorescent protein (GFP)-labeled pSELECT-GFP zeohBMP2 eukaryotic expression vector.Methods The encoding fragment of hBMP2 gene was obtained from a recombinant plasmid pcDNA3.1/CT-hBMP2 by...Objective To construct green fluorescent protein (GFP)-labeled pSELECT-GFP zeohBMP2 eukaryotic expression vector.Methods The encoding fragment of hBMP2 gene was obtained from a recombinant plasmid pcDNA3.1/CT-hBMP2 by using polymerase展开更多
The human immunodeficiency virus (HIV) lentiviral vector is an ideal vector for gene therapy. In the present study, the wild-type HIV-1 genome was segregated into four plasmids, and an optimized novel HIV-1 lentivir...The human immunodeficiency virus (HIV) lentiviral vector is an ideal vector for gene therapy. In the present study, the wild-type HIV-1 genome was segregated into four plasmids, and an optimized novel HIV-1 lentiviral vector containing green fluorescent protein and vesicular stomatitis virus G pseudo-capsule was constructed. The plasmids were pHR-CMV-EGFP, pCMVΔ8.9, pRSV-Rev, pCMV-VSV-G. The four plasmid system was co-transfected into 293T cells, and green fluorescent protein expression was observed. The present study obtained lentiviral particles by high-speed centrifugation, and the lentiviral particle titer was 4 × 108 TU/mL after centrifugation. Thus, an optimized novel HIV-1 lentiviral vector was successfully constructed.展开更多
We have constructed a retroviral vector mediated mammalian cell expression system of the capsid precursor protein of foot-and-mouth disease virus(FMDV).The recombinant retroviral vector pBABEpuro-P1-2A-EGFP was constr...We have constructed a retroviral vector mediated mammalian cell expression system of the capsid precursor protein of foot-and-mouth disease virus(FMDV).The recombinant retroviral vector pBABEpuro-P1-2A-EGFP was constructed by sequentially inserting capsid precursor protein gene(P1) of FMDV and enhanced green fluorescent protein gene(EGFP) into pBABEpuro.The recombinant retroviral vector and the pVSV-G plasmid were co-transfected into packaging cells(GP2-293) by liposomemediated transduction to produce the pseudovirus.The pseudovirus was used to infect BHK-21 cells and resistant cells were screened with puromycin.Green fluorescent proteins were observed by fluorescence microscopy and expression of the capsid precursor protein gene of FMDV was detected by indirect immunofluorescence.The recombinant retroviral vector pBABEpuro-P1-2A-EGFP was constructed successfully.The capsid precursor protein of FMDV and green fluorescent protein were expressed in BHK-21 cells.The mammalian cell expression system for the capsid precursor protein of FMDV has been constructed successfully,which lays the foundation of development of a FMDV subunit vaccine.展开更多
[Objective]Foxtail mosaic virus(FoMV)infects gramineous and dicotyledonous plants.In this study,we sought to construct a viral vector based on FoMV to express exogenous proteins in plants.[Method]A recombinant viral e...[Objective]Foxtail mosaic virus(FoMV)infects gramineous and dicotyledonous plants.In this study,we sought to construct a viral vector based on FoMV to express exogenous proteins in plants.[Method]A recombinant viral expression vector was constructed by inserting the promotor of Potato virus X(PVX)and exogenous gene sequences into the 3’non-coding region of the FoMV coat protein gene.[Results]The plasmid pCB301-FoMV-CP-PVXprom-GFP expressed green fluorescent protein in inoculated Nicotiana benthamiana leaves.[Conclusion]A recombinant viral expression vector was constructed successfully.展开更多
To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the con...To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-Ⅰ and HSP70A-RBCS2 mediated strain Tran-Ⅱ. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-Ⅱ was at least double of that in Tran-Ⅰ. In addition, a threefold increase of GFP in Tran-Ⅱ was induced by heat shock at 40℃. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.展开更多
We studied the relationship between insertion of the last sense codon (i.e., the codon preceding the stop codon) and the efficiency of gene expression. We inserted 64 kinds of last sense codon at the 5’ end of the st...We studied the relationship between insertion of the last sense codon (i.e., the codon preceding the stop codon) and the efficiency of gene expression. We inserted 64 kinds of last sense codon at the 5’ end of the stop codon of the green fluorescent protein (GFP) gene and introduced the modified GFP genes into Escherichia coli (E. coli). Measuring the fluorescence intensity of the GFP produced in E. coli showed that the last sense codon influenced GFP gene expression and when CCG was inserted as the last sense codon, fluorescence intensity of E. coli was increased to 2.09 fold. On the other hand, insertion of CUA caused decrease of fluorescence intensity to 0.33 fold. We hope that our findings, which may be applicable to gene engineering, will be useful for further studies of protein expression.展开更多
Objectives To construct a recombinant plasmid carrying enhanced green fluore- scent protein (EGFP) and human vascular endothelial growth factor (VEGF) 121 gene and detect its expre- ssion in rat mesenchymal stem cells...Objectives To construct a recombinant plasmid carrying enhanced green fluore- scent protein (EGFP) and human vascular endothelial growth factor (VEGF) 121 gene and detect its expre- ssion in rat mesenchymal stem cells (MSCs). Methods Human VEGF121 cDNA was amplified with polymerase chain reaction (PCR) from pCD/hVEGF121 and was inserted into the eukaryotic expression vector pEGFP- C1. After being identified with PCR, double enzyme digestion and DNA sequencing. The recombinant plasmid pEGFP/hVEGF121 was transferred into rat MSCs with lipofectamine. The expression of EGFP/VEGF121 fusion protein were detected with fluorescence microscope and immunocytochemical staining respectively. Results The recombinant plasmid was confirmed with PCR, double enzyme digestion and DNA sequencing. The fluoresce- nce microscope and immunocytochemical staining results showed that the EGFP and VEGF121 protein were expressed in MSCs 48 h after transfection. Conclusions The recombinant plasmid carrying EGFP and human VEGF was successfully constructed and expressed positively in rat MSCs. It offers a promise tool for further research on differentiation of MSCs and VEGF gene therapy for ischemial cardiovascular disease.展开更多
Objective: To evaluate the transduction efficiency of a recombinant adenovirus carrying the gene for green fluorescent protein (Ad-GFP) into the primary cultures of fetal neural stem cells (NSCs) by the expression of ...Objective: To evaluate the transduction efficiency of a recombinant adenovirus carrying the gene for green fluorescent protein (Ad-GFP) into the primary cultures of fetal neural stem cells (NSCs) by the expression of GFP. Methods: The Ad-GFP was constructed by homologous recombination in bacteria with the AdEasy system; NSCs were isolated from rat fetal hippocampus and cultured as neurosphere suspensions. After infection with the recombinant Ad-GFP, NSCs were examined with a fluorescent microscopy and a flow cytometry for their expression of GFP. Results: After the viral infection, flow cytometry analysis revealed that the percentage of GFP-positive cells was as high as 97.05%. The infected NSCs sustained the GFP expression for above 4 weeks. After differentiated into astrocytes or neurons, they continued to express GFP efficiently. Conclusion: We have success- fully constructed a viral vector Ad-GFP that can efficiently infect the primary NSCs. The reporter gene was showed fully and sustained expression in the infected cells as well as their differentiated progenies.展开更多
Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inne...Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.展开更多
Objective: To investigate the feasibility of marking the human tumor cells with enhanced green fluorescent protein (EGFP) in vitro. Methods: The retroviral vector LGSN encoding EGFP was constructed and three human tum...Objective: To investigate the feasibility of marking the human tumor cells with enhanced green fluorescent protein (EGFP) in vitro. Methods: The retroviral vector LGSN encoding EGFP was constructed and three human tumor cell lines were infected with LGSN amphotropic virus. Tumor cell lines that stably express EGFP were selected with G418. The integration and expression of EGFP gene were analyzed by polymerase chain reaction, and flow cytometry (FCM). Results: After gene transfection and ping-pong transduction, amphotropic producer line Am12/LGSN was generated with a stable green fluorescence signal readily detectable by FCM in up to 97% of examined cells. The viral titer in the supernatants was up to 8.2×105CFU/ml. After transduction and selection, G418-resistant leukemia K562, mammary carcinoma MCF-7, and bladder cancer 5637 cells were developed, in which the integration of both EGFP and neomycin resistance gene was confirmed by DNA amplification. In comparison with uninfected cells, FCM analysis revealed EGFP expression in up to 90% (range 85.5%–90.0%) of tumor cells containing LGSN provirus. Conclusion: The retroviral vector LGSN can effectively mark the human tumor cells with a stably EGFP expression which may be in studying tumor growth, metastasis and angiogenesis.展开更多
[Objective] To study the physiological biochemical characteristic of Os- WRKY17 in rice and identify the subcellular location of OsWRKY17. [Method] The primer of the OsWRKY17 gene was designed according to the full-le...[Objective] To study the physiological biochemical characteristic of Os- WRKY17 in rice and identify the subcellular location of OsWRKY17. [Method] The primer of the OsWRKY17 gene was designed according to the full-length sequence of OsWRKY17 in Genbank and was cloned by RT-PCR. The cloned fragment was then recombined with the green fluorescent protein gene of plasmid vector pBinGFP. The recombinant plasmid pBinGFP-OsWRKY17 was transformed into Arabidopsis through Agrobacterium tumefaciens strain GV3101. [Result] Colony PCR and diges- tion identification proved that the plant expression vector pBinGFP-OsWRKY17 was successfully constructed by the fusion of OsWRKY17 and GFP, and the expression vector was successfully transformed into the genome of Arabidopsis, there by ob- taining a resistant plant. [Conclusion] The construction of OsWRKY17 expression vector established the foundation for study on the physiological the biochemical char- acteristics of QsWRKY17.展开更多
To establish a rapid quantification method for heparinase I during its production in recombinant Escherichia coli, a translational fusion vector was constructed by fusing the N terminus of heparinase I to the C termin...To establish a rapid quantification method for heparinase I during its production in recombinant Escherichia coli, a translational fusion vector was constructed by fusing the N terminus of heparinase I to the C terminus of a green fluorescent protein mutant (GFPmutl). As a result, not only was the functional recombinant expression of heparinase I in E. coli accomplished, but also a linear correlation was obtained between the GFP fluorescence intensity and heparinase I activity, allowing enzyme activity to be quantified rapidly during the fermentation.展开更多
A transposon-shuttle vector Hanpvid was constructed by using wild-type genomic DNA from Heliothis armigera nuclear polyhedrosis virus (HaNPV). lt could replicate in E. coli cells as a large plasmid and remain infectio...A transposon-shuttle vector Hanpvid was constructed by using wild-type genomic DNA from Heliothis armigera nuclear polyhedrosis virus (HaNPV). lt could replicate in E. coli cells as a large plasmid and remain infectious when being induced into insect cells.Hanpvid comprises HaNPV DNA and a transposon cassette which includes a miniF replicon, a kanamycin resistance gene (kan), lacZa and an attachment site for Tn7 (attTn7). Recombinant virus rHa-FaGP was obtained after transposition of a donor plasmid carrying green fluorescent protein gene (gfp) and polyhedrin gene (ocu) into attTn7.SDS-PAGE analysis shows that both gfp and ocu genes were highly expressed in Heliothis armigera cells. Green Hemolymphocytes can be seen under a fluorescent microscope 4 d after recombinant virus rHa-FaGP infected the third-instar larvae. The infected larvae show strong green fluorescence 6 d post infection.展开更多
[Objective] The study was to understand the subcellular localization of OsWRKY78 protein in plants. [Method] Primers specific for OsWRKY78 gene were designed according to the OsWRKY78 full length sequence in Genbank. ...[Objective] The study was to understand the subcellular localization of OsWRKY78 protein in plants. [Method] Primers specific for OsWRKY78 gene were designed according to the OsWRKY78 full length sequence in Genbank. The gene was cloned by RT-PCR method. The gene was then recombined into a plasmid expression vector carrying green fluorescent protein (GFP) gene, pBinGFP. The recombinant was confirmed by PCR and enzyme digestion. The recombinant plasmid pBinGFP-OsWRKY was transformed into Arabidopsis through Agrobacterium tumefaciens strain GV3101 and transgenic plants were obtained. [Result] Measured by fluorescence microscopy, the expression of OsWRKY78 and GFP fusion protein in root tip cells was localized in the nucleus. [Conclusion] This study laid the foundation for further investigating the function of OsWRKY78 gene and its role in related signal transduction and provided theoretical basis for exploring the relation between OsWRKY78 gene and brown planthoppers.展开更多
To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a pro...To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a probe.The DNA was successfully constructed on a 6xHis-tagged prokaryotic expression plasmid.The non-GFP labeled MIM-I-BAR encoding plasmid was also constructed as a control. Being successfully transformed into BL21 (DE3 )cells,the GFP-conjugated MIM-I-BAR (MIM-I-BAR-GFP ) exhibits strong visible fluorescence,and the expression product can be easily detected by visual inspection, a fluorescence microscope, Western blot or ultraviolet and visible spectrophotometer. Moreover, examination of expression efficiency under various culture conditions revealed that the MIM-I-BAR-GFP gene has a high protein yield at 10 ℃,but not at the culture temperature of 37 ℃.This property is much different from that of the non-fluorescent MIM-I-BAR gene. This optimal expression condition is also proved to be feasible for protein production in midi-scale. The fluorescent recombinant MIM-I-BAR-GFP protein can serve as a useful tool in scientific research, biomedical application and pharmaceutical development.展开更多
We demonstrated the simple and effective production of transgenic chickens, in which the enhanced green fluorescence protein (EGFP) was expressed by using third-generation self-inactive HIV-based lentiviral vectors....We demonstrated the simple and effective production of transgenic chickens, in which the enhanced green fluorescence protein (EGFP) was expressed by using third-generation self-inactive HIV-based lentiviral vectors. In our experiments, lentiviruses were injected into 204 fertilized eggs, from which 30 (15%) chickens were hatched. The exogenous gene was detected in the genomes of 16 out of 30 (53%) chickens. The green fluorescence signal was observed directly in various body parts, and was particularly significant in the testes. The transgenes were also found in the offspring of these chickens. The results indicate that HIV-based lentiviral vectors can be used to generate transgenic birds economically and effectively [ Current Zoology 55 (5): 383 - 387,2009].展开更多
The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to p...The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer, but these approaches have been largely ineffective; however, a third approach, lentivirus-mediated transgenesis, has successfully produced transgenic livestock. In this study, we generated transgenic (TG) Korean native cattle using perivitelline space injection of viral vectors, which expressed enhanced green fluorescent protein (EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) carrying EGFP were injected into the perivitelline space of MII oocytes. EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group (47.5% ± 2.2% v.s. 22.9% 4± 2.9%). Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers. Ten heifers were successfully impregnated and delivered 10 healthy calves. All of these calves expressed EGFP as detected by in vivo imaging, PCR and Southern blotting. In addition, we established an EGFP-expressing cell line from TG calves, which was followed by nuclear transfer (NT). Recloned 8-cell embryos also expressed EGFP, and there were no differences in the rates of fusion, cleavage and development between cells derived from TG and non-TG calves, which were subsequently used for NT. These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle. Moreover, our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells.展开更多
文摘The green fluorescence of bioluminescent jellyfish Aequorea victoria is due to the presence of the green fluorescent protein (GFP). To examine whether the GFP gene can be applied as a reporter gene in insect cells, a baculovirus transfer vector containing the neomycin resistance gene (neo) was established. The GFP gene was subcloned into the vector downstream of the polyhedrin gene (ocu) promoter. In the presence of G418, the recombinant virus can be purified. Expression of the GFP gene in the recombinant virus should give rise to synthesis of the GFP with a molecular weight of 30×10 3 dalton, and is observable by the strong green light irradiated by ultraviolet or blue light in viable intact insect cells. The GFP produced in insect cells has typical fluorescent spectra indistinguishable from those of the purified native GFP. The GFP gene as a good reporter gene can be applied to the baculovirus insect cell expression system.
文摘Objective To construct green fluorescent protein (GFP)-labeled pSELECT-GFP zeohBMP2 eukaryotic expression vector.Methods The encoding fragment of hBMP2 gene was obtained from a recombinant plasmid pcDNA3.1/CT-hBMP2 by using polymerase
基金the National Natural Science Foundation of China, No. 30770755
文摘The human immunodeficiency virus (HIV) lentiviral vector is an ideal vector for gene therapy. In the present study, the wild-type HIV-1 genome was segregated into four plasmids, and an optimized novel HIV-1 lentiviral vector containing green fluorescent protein and vesicular stomatitis virus G pseudo-capsule was constructed. The plasmids were pHR-CMV-EGFP, pCMVΔ8.9, pRSV-Rev, pCMV-VSV-G. The four plasmid system was co-transfected into 293T cells, and green fluorescent protein expression was observed. The present study obtained lentiviral particles by high-speed centrifugation, and the lentiviral particle titer was 4 × 108 TU/mL after centrifugation. Thus, an optimized novel HIV-1 lentiviral vector was successfully constructed.
基金supported by the National Programs for High Technology Research and Development of China (2006AA10A204)the Gansu Key Technologies R&D Program(ZGS-052-A41-0006-03)the Programs for Director Fund of Lanzhou Veterinary Research Institute
文摘We have constructed a retroviral vector mediated mammalian cell expression system of the capsid precursor protein of foot-and-mouth disease virus(FMDV).The recombinant retroviral vector pBABEpuro-P1-2A-EGFP was constructed by sequentially inserting capsid precursor protein gene(P1) of FMDV and enhanced green fluorescent protein gene(EGFP) into pBABEpuro.The recombinant retroviral vector and the pVSV-G plasmid were co-transfected into packaging cells(GP2-293) by liposomemediated transduction to produce the pseudovirus.The pseudovirus was used to infect BHK-21 cells and resistant cells were screened with puromycin.Green fluorescent proteins were observed by fluorescence microscopy and expression of the capsid precursor protein gene of FMDV was detected by indirect immunofluorescence.The recombinant retroviral vector pBABEpuro-P1-2A-EGFP was constructed successfully.The capsid precursor protein of FMDV and green fluorescent protein were expressed in BHK-21 cells.The mammalian cell expression system for the capsid precursor protein of FMDV has been constructed successfully,which lays the foundation of development of a FMDV subunit vaccine.
基金Supported by Key Laboratory Open Foundation Project of Hunan Education Department(18K100)Graduate Research Innovation Project of Hunan Province(CX2018B800)~~
文摘[Objective]Foxtail mosaic virus(FoMV)infects gramineous and dicotyledonous plants.In this study,we sought to construct a viral vector based on FoMV to express exogenous proteins in plants.[Method]A recombinant viral expression vector was constructed by inserting the promotor of Potato virus X(PVX)and exogenous gene sequences into the 3’non-coding region of the FoMV coat protein gene.[Results]The plasmid pCB301-FoMV-CP-PVXprom-GFP expressed green fluorescent protein in inoculated Nicotiana benthamiana leaves.[Conclusion]A recombinant viral expression vector was constructed successfully.
基金Supported by the High Technology Research and Development Program of China (863 Program) (No. 2005AA601010-05)the Natural Science Foundation of Guangdong Province (No.5010492)the Technology Project of Shenzhen City
文摘To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-Ⅰ and HSP70A-RBCS2 mediated strain Tran-Ⅱ. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-Ⅱ was at least double of that in Tran-Ⅰ. In addition, a threefold increase of GFP in Tran-Ⅱ was induced by heat shock at 40℃. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.
文摘We studied the relationship between insertion of the last sense codon (i.e., the codon preceding the stop codon) and the efficiency of gene expression. We inserted 64 kinds of last sense codon at the 5’ end of the stop codon of the green fluorescent protein (GFP) gene and introduced the modified GFP genes into Escherichia coli (E. coli). Measuring the fluorescence intensity of the GFP produced in E. coli showed that the last sense codon influenced GFP gene expression and when CCG was inserted as the last sense codon, fluorescence intensity of E. coli was increased to 2.09 fold. On the other hand, insertion of CUA caused decrease of fluorescence intensity to 0.33 fold. We hope that our findings, which may be applicable to gene engineering, will be useful for further studies of protein expression.
文摘Objectives To construct a recombinant plasmid carrying enhanced green fluore- scent protein (EGFP) and human vascular endothelial growth factor (VEGF) 121 gene and detect its expre- ssion in rat mesenchymal stem cells (MSCs). Methods Human VEGF121 cDNA was amplified with polymerase chain reaction (PCR) from pCD/hVEGF121 and was inserted into the eukaryotic expression vector pEGFP- C1. After being identified with PCR, double enzyme digestion and DNA sequencing. The recombinant plasmid pEGFP/hVEGF121 was transferred into rat MSCs with lipofectamine. The expression of EGFP/VEGF121 fusion protein were detected with fluorescence microscope and immunocytochemical staining respectively. Results The recombinant plasmid was confirmed with PCR, double enzyme digestion and DNA sequencing. The fluoresce- nce microscope and immunocytochemical staining results showed that the EGFP and VEGF121 protein were expressed in MSCs 48 h after transfection. Conclusions The recombinant plasmid carrying EGFP and human VEGF was successfully constructed and expressed positively in rat MSCs. It offers a promise tool for further research on differentiation of MSCs and VEGF gene therapy for ischemial cardiovascular disease.
基金Project (No. 30672308) supported by the National Natural ScienceFoundation of China
文摘Objective: To evaluate the transduction efficiency of a recombinant adenovirus carrying the gene for green fluorescent protein (Ad-GFP) into the primary cultures of fetal neural stem cells (NSCs) by the expression of GFP. Methods: The Ad-GFP was constructed by homologous recombination in bacteria with the AdEasy system; NSCs were isolated from rat fetal hippocampus and cultured as neurosphere suspensions. After infection with the recombinant Ad-GFP, NSCs were examined with a fluorescent microscopy and a flow cytometry for their expression of GFP. Results: After the viral infection, flow cytometry analysis revealed that the percentage of GFP-positive cells was as high as 97.05%. The infected NSCs sustained the GFP expression for above 4 weeks. After differentiated into astrocytes or neurons, they continued to express GFP efficiently. Conclusion: We have success- fully constructed a viral vector Ad-GFP that can efficiently infect the primary NSCs. The reporter gene was showed fully and sustained expression in the infected cells as well as their differentiated progenies.
基金National Natural Science Foundation of China (Grant Nos 30470074,30671615)Innovation Project of the Chinese Academy of Sciences (KSCX2-YW-N-021).
文摘Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.
文摘Objective: To investigate the feasibility of marking the human tumor cells with enhanced green fluorescent protein (EGFP) in vitro. Methods: The retroviral vector LGSN encoding EGFP was constructed and three human tumor cell lines were infected with LGSN amphotropic virus. Tumor cell lines that stably express EGFP were selected with G418. The integration and expression of EGFP gene were analyzed by polymerase chain reaction, and flow cytometry (FCM). Results: After gene transfection and ping-pong transduction, amphotropic producer line Am12/LGSN was generated with a stable green fluorescence signal readily detectable by FCM in up to 97% of examined cells. The viral titer in the supernatants was up to 8.2×105CFU/ml. After transduction and selection, G418-resistant leukemia K562, mammary carcinoma MCF-7, and bladder cancer 5637 cells were developed, in which the integration of both EGFP and neomycin resistance gene was confirmed by DNA amplification. In comparison with uninfected cells, FCM analysis revealed EGFP expression in up to 90% (range 85.5%–90.0%) of tumor cells containing LGSN provirus. Conclusion: The retroviral vector LGSN can effectively mark the human tumor cells with a stably EGFP expression which may be in studying tumor growth, metastasis and angiogenesis.
基金Supported by the National Natural Science Foundation of China(30971912)the Science and Technology Planning Project of the Colleges under Guangzhou Jurisdiction(08C030)+1 种基金the Guangzhou Science and Technology Planning Project(2008J1-C251-2)the"Yangcheng Scholars"Academic Backbone Project of the Colleges under Guangzhou Jurisdiction(10A042G)~~
文摘[Objective] To study the physiological biochemical characteristic of Os- WRKY17 in rice and identify the subcellular location of OsWRKY17. [Method] The primer of the OsWRKY17 gene was designed according to the full-length sequence of OsWRKY17 in Genbank and was cloned by RT-PCR. The cloned fragment was then recombined with the green fluorescent protein gene of plasmid vector pBinGFP. The recombinant plasmid pBinGFP-OsWRKY17 was transformed into Arabidopsis through Agrobacterium tumefaciens strain GV3101. [Result] Colony PCR and diges- tion identification proved that the plant expression vector pBinGFP-OsWRKY17 was successfully constructed by the fusion of OsWRKY17 and GFP, and the expression vector was successfully transformed into the genome of Arabidopsis, there by ob- taining a resistant plant. [Conclusion] The construction of OsWRKY17 expression vector established the foundation for study on the physiological the biochemical char- acteristics of QsWRKY17.
基金Supported by the National Natural Science Foundation of China (No.20336010 and No.20176025).
文摘To establish a rapid quantification method for heparinase I during its production in recombinant Escherichia coli, a translational fusion vector was constructed by fusing the N terminus of heparinase I to the C terminus of a green fluorescent protein mutant (GFPmutl). As a result, not only was the functional recombinant expression of heparinase I in E. coli accomplished, but also a linear correlation was obtained between the GFP fluorescence intensity and heparinase I activity, allowing enzyme activity to be quantified rapidly during the fermentation.
文摘A transposon-shuttle vector Hanpvid was constructed by using wild-type genomic DNA from Heliothis armigera nuclear polyhedrosis virus (HaNPV). lt could replicate in E. coli cells as a large plasmid and remain infectious when being induced into insect cells.Hanpvid comprises HaNPV DNA and a transposon cassette which includes a miniF replicon, a kanamycin resistance gene (kan), lacZa and an attachment site for Tn7 (attTn7). Recombinant virus rHa-FaGP was obtained after transposition of a donor plasmid carrying green fluorescent protein gene (gfp) and polyhedrin gene (ocu) into attTn7.SDS-PAGE analysis shows that both gfp and ocu genes were highly expressed in Heliothis armigera cells. Green Hemolymphocytes can be seen under a fluorescent microscope 4 d after recombinant virus rHa-FaGP infected the third-instar larvae. The infected larvae show strong green fluorescence 6 d post infection.
文摘[Objective] The study was to understand the subcellular localization of OsWRKY78 protein in plants. [Method] Primers specific for OsWRKY78 gene were designed according to the OsWRKY78 full length sequence in Genbank. The gene was cloned by RT-PCR method. The gene was then recombined into a plasmid expression vector carrying green fluorescent protein (GFP) gene, pBinGFP. The recombinant was confirmed by PCR and enzyme digestion. The recombinant plasmid pBinGFP-OsWRKY was transformed into Arabidopsis through Agrobacterium tumefaciens strain GV3101 and transgenic plants were obtained. [Result] Measured by fluorescence microscopy, the expression of OsWRKY78 and GFP fusion protein in root tip cells was localized in the nucleus. [Conclusion] This study laid the foundation for further investigating the function of OsWRKY78 gene and its role in related signal transduction and provided theoretical basis for exploring the relation between OsWRKY78 gene and brown planthoppers.
基金The National Basic Research Program of China(973Program)(No.2011CB933503)the National Natural Science Foundation of China for Key Project of International Cooperation(No.61420106012)China Postdoctoral Science Foundation(No.2013M541592)
文摘To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a probe.The DNA was successfully constructed on a 6xHis-tagged prokaryotic expression plasmid.The non-GFP labeled MIM-I-BAR encoding plasmid was also constructed as a control. Being successfully transformed into BL21 (DE3 )cells,the GFP-conjugated MIM-I-BAR (MIM-I-BAR-GFP ) exhibits strong visible fluorescence,and the expression product can be easily detected by visual inspection, a fluorescence microscope, Western blot or ultraviolet and visible spectrophotometer. Moreover, examination of expression efficiency under various culture conditions revealed that the MIM-I-BAR-GFP gene has a high protein yield at 10 ℃,but not at the culture temperature of 37 ℃.This property is much different from that of the non-fluorescent MIM-I-BAR gene. This optimal expression condition is also proved to be feasible for protein production in midi-scale. The fluorescent recombinant MIM-I-BAR-GFP protein can serve as a useful tool in scientific research, biomedical application and pharmaceutical development.
基金supported by National High Technology Research and Development Program of China(863 Key Program,No.2007AA100504)Anhui Natural Science Foundation(No.050410201)
文摘We demonstrated the simple and effective production of transgenic chickens, in which the enhanced green fluorescence protein (EGFP) was expressed by using third-generation self-inactive HIV-based lentiviral vectors. In our experiments, lentiviruses were injected into 204 fertilized eggs, from which 30 (15%) chickens were hatched. The exogenous gene was detected in the genomes of 16 out of 30 (53%) chickens. The green fluorescence signal was observed directly in various body parts, and was particularly significant in the testes. The transgenes were also found in the offspring of these chickens. The results indicate that HIV-based lentiviral vectors can be used to generate transgenic birds economically and effectively [ Current Zoology 55 (5): 383 - 387,2009].
基金supported by a grant from the BioGreen 21 program(Nos.PJ009080,PJ008067 and PJ007990022012)Rural Development Administration(RDA),Republic of Korea
文摘The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer, but these approaches have been largely ineffective; however, a third approach, lentivirus-mediated transgenesis, has successfully produced transgenic livestock. In this study, we generated transgenic (TG) Korean native cattle using perivitelline space injection of viral vectors, which expressed enhanced green fluorescent protein (EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) carrying EGFP were injected into the perivitelline space of MII oocytes. EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group (47.5% ± 2.2% v.s. 22.9% 4± 2.9%). Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers. Ten heifers were successfully impregnated and delivered 10 healthy calves. All of these calves expressed EGFP as detected by in vivo imaging, PCR and Southern blotting. In addition, we established an EGFP-expressing cell line from TG calves, which was followed by nuclear transfer (NT). Recloned 8-cell embryos also expressed EGFP, and there were no differences in the rates of fusion, cleavage and development between cells derived from TG and non-TG calves, which were subsequently used for NT. These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle. Moreover, our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells.