In order to improve the toughness and wear resistance of high-boron medium-carbon alloy (HBMCA), a novel wear-resistant HBMCA comprising granular borocarbide was obtained by titanium, magnesium, and rare earth modif...In order to improve the toughness and wear resistance of high-boron medium-carbon alloy (HBMCA), a novel wear-resistant HBMCA comprising granular borocarbide was obtained by titanium, magnesium, and rare earth modifications. These modifications gave rise to greatly refined as-cast eutectic borocarbide structures and a less interconnected continuous borocarbide network. Heat treatment mostly produced broken and spheriodized borocarbides that tended to exist as isolated particles in modified HBMCA. The heat treated modified HBMCA exhibited enhanced hardness than pristine and impact toughness was improved significantly to 12.5 J/cm^2. In addition, it displayed 2.39 and 1.7 times greater wear resistance than high-speed steel (HSS) and high nickel-chromium alloy steel (Cr25) at high temperature (500℃), respectively. Here, the modification mechanisms involving Re2O3, TiN, and MgO/ MgS heterogeneous nuclei were discussed.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51261013)
文摘In order to improve the toughness and wear resistance of high-boron medium-carbon alloy (HBMCA), a novel wear-resistant HBMCA comprising granular borocarbide was obtained by titanium, magnesium, and rare earth modifications. These modifications gave rise to greatly refined as-cast eutectic borocarbide structures and a less interconnected continuous borocarbide network. Heat treatment mostly produced broken and spheriodized borocarbides that tended to exist as isolated particles in modified HBMCA. The heat treated modified HBMCA exhibited enhanced hardness than pristine and impact toughness was improved significantly to 12.5 J/cm^2. In addition, it displayed 2.39 and 1.7 times greater wear resistance than high-speed steel (HSS) and high nickel-chromium alloy steel (Cr25) at high temperature (500℃), respectively. Here, the modification mechanisms involving Re2O3, TiN, and MgO/ MgS heterogeneous nuclei were discussed.