期刊文献+
共找到18,811篇文章
< 1 2 250 >
每页显示 20 50 100
A Study on the Assessment and Integration of Multi-Source Evapotranspiration Products over the Tibetan Plateau
1
作者 Ming CHENG Lei ZHONG +6 位作者 Yaoming MA Han MA Yaoxin CHANG Peizhen LI Meilin CHENG Xian WANG Nan GE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期435-448,共14页
Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in th... Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in the evaluation and integration of ET products in remote and complex areas such as the Tibetan Plateau(TP).In this paper,the applicability of the multiple collocation(MC)method over the TP is evaluated for the first time,and the uncertainty of multisource ET products(based on reanalysis,remote sensing,and land surface models)is further analyzed,which provides a theoretical basis for ET data fusion.The results show that 1)ET uncertainties quantified via the MC method are lower in RS-based ET products(5.95 vs.7.06 mm month^(-1))than in LSM ET products(10.22 vs.17.97 mm month^(-1))and reanalysis ET estimates(7.27 vs.12.26 mm month-1).2)A multisource evapotranspiration(MET)dataset is generated at a monthly temporal scale with a spatial resolution of 0.25°across the TP during 2005-15.MET has better performance than any individual product.3)Based on the fusion product,the total ET amount over the TP and its patterns of spatiotemporal variability are clearly identified.The annual total ET over the entire TP is approximately 380.60 mm.Additionally,an increasing trend of 1.59±0.85 mm yr^(-1)over the TP is shown during 2005-15.This study provides a basis for future studies on water and energy cycles and water resource management over the TP and surrounding regions. 展开更多
关键词 evapotranspiration data fusion multiple collocation the Tibetan Plateau
下载PDF
Unveiling evapotranspiration patterns and energy balance in a subalpine forest of the Qinghai-Tibet Plateau:observations and analysis from an eddy covariance system
2
作者 Niu Zhu Jinniu Wang +6 位作者 Dongliang Luo Xufeng Wang Cheng Shen Ning Wu Ning Zhang Binghui Tian Aihong Gai 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期175-188,共14页
Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qing... Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale. 展开更多
关键词 evapotranspiration Energy balance Subalpine forest Three Parallel Rivers region Southeast Qinghai-Tibet Plateau
下载PDF
Spatial-temporal heterogeneity and controlling factors of evapotranspiration in Nujiang River Basin based on Variable Infiltration Capacity(VIC)model
3
作者 ZHANG Xianhe LIU Shiyin +1 位作者 ZHU Yu XIE Fuming 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3598-3614,共17页
Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by la... Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw). 展开更多
关键词 evapotranspiration Variable infiltration capacity(VIC)model Spatial temporal heterogeneity Climate change Controlling factors Nujiang River Basin
下载PDF
Correlation Analysis between the Evapotranspiration Quantity and Climatic Factors of Artificial Grassland in Three River Sources Areas 被引量:11
4
作者 冯承彬 张耀生 +2 位作者 赵双喜 赵新全 米兆荣 《Agricultural Science & Technology》 CAS 2008年第5期13-18,共6页
Based on observation data from the mini-type automatic weather station,the evapotranspiration quantity of reference crops from artificial grassland in three river sources areas was estimated by the method of FAO Penma... Based on observation data from the mini-type automatic weather station,the evapotranspiration quantity of reference crops from artificial grassland in three river sources areas was estimated by the method of FAO Penman-Monteith.The actual evapotranspiration quantity of grassland was calculated according to the synthetic crop coefficients referenced by FAQ-56,and the change of the actual evapotranspiration quantity of artificial grassland in three river sources areas as well as the relationship between the evapotranspiration quantity and climatic factors were studied.The results suggested that the seasonal change of actual evapotranspiration quantity in grassland was expressed in a single peak curve with the peak in the middle August,and daily transpiration quantity in summer was significantly larger than that in winter.The evapotranspiration was significantly correlated with air temperature,solar radiation and relative humidity,but not significantly correlated with wind speed.Effects of climatic factors on the evapotranspiration quantity of artificial grassland were ordered as follow:air temperature(T)>solar radiation(Ra)>relative humidity(RH)>wind speed(u2). 展开更多
关键词 THREE RIVER SOURCES Artificial GRASSLAND evapotranspiration CLIMATIC factor
下载PDF
Temporal and Spatial Distribution Characteristics of Potential Evapotranspiration and Its Sensitivity to Meteorological Factors in Guizhou Province 被引量:2
5
作者 于飞 谷晓平 熊华 《Agricultural Science & Technology》 CAS 2015年第12期2845-2848,共4页
[Objective] The study aims to discuss the changes of potential evapotran- spiration and its sensitivity to meteorological factors in Guizhou Province, so as to provide important references for assessment of water reso... [Objective] The study aims to discuss the changes of potential evapotran- spiration and its sensitivity to meteorological factors in Guizhou Province, so as to provide important references for assessment of water resources, research of agri- cultural water conservancy and climate change. [Method] Temporal and spatial dis- tribution characteristics of potential evapotranspiration in Guizhou Province from 1961 to 2010 were analyzed, and the sensitivity of potential evapotranspiration to meteo- rological factors in Guizhou Province was studied through correlation analysis. [Re- sult] On the whole, potential evapotranspiration in Guizhou Province was higher in the southwest and the west compared with the northeast and the east. In various seasons, it was the highest in summer, followed by spring and autumn, while it was the lowest in winter. In recent 40 years, annual potential evapotranspiration showed an obvious decreasing trend in most stations of Guizhou Province. The main meteo- rological factors influencing changes of potential evapotranspiration in Guizhou Province were sunshine duration, daily maximum temperature, and daily average relative humidity. [Conclusion] Daily average temperature was not the main meteoro- logical factor affecting changes of potential evapotranspiration in Guizhou Province, while sunshine duration, daily maximum temperature, and daily average relative hu- midity had important effects on potential evapotranspiration in Guizhou Province. 展开更多
关键词 Potential evapotranspiration Temporal-and spatial distribution Sensitivefactor GUIZHOU
下载PDF
Study on Artificial Neural Network Model for Crop Evapotranspiration
6
作者 冯雪 潘英华 张振华 《Agricultural Science & Technology》 CAS 2007年第3期11-14,41,共5页
Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( met... Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( meteorological factors and sowing days) and ET3 (meteorological factors, sowing days and water content). And the predicted result was compared with actual value ET that was obtained by weighing method. The results showed that the ET3 model had higher calculation precision and an optimum BP-artificial neural network model for calculating crop evapotranspiration. 展开更多
关键词 Crop evapotranspiration BP-artificial neural network Fitting precision
下载PDF
Estimation of Regional Evapotranspiration in Alpine Area and Its Response to Land Use Change:A Case Study in Three-River Headwaters Region of Qinghai-Tibet Plateau,China 被引量:6
7
作者 LI Huixia LIU Guohua FU Bojie 《Chinese Geographical Science》 SCIE CSCD 2012年第4期437-449,共13页
Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Q... Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Qing- hai-Tibet Plateau as a case, the annual evapotranspiration (ET) model developed by Zhang et al. (2001) was applied to evaluate mean annual ET in the alpine area, and the response of annual ET to land use change was analyzed. The plant-available water coefficient (w) of Zhang's model was revised by using vegetation-temperature condition index (VTCI) before annual ET was calculated in alpine area. The future land use scenario, an input of ET model, was spa- tially simulated by using the conversion of land use and its effects at small regional extent (CLUE-S) to study the re- sponse of ET to land use change. Results show that the relative errors between the simulated ET and that calculated by using water balance equation were 3.81% and the index of agreement was 0.69. This indicates that Zhang's ET model based on revised plant-available water coefficient is a scientific and practical tool to estimate the annual ET in the al- pine area. The annual ET in 2000 in the study area was 221.2 ram, 11.6 mm more than that in 1980. Average annual ET decreased from southeast to northwest, but the change of annual ET between 1980 and 2000 increased from southeast to northwest. As a vast and sparsely populated area, the population in the TRH region was extremely unbalanced and land use change was concentrated in very small regions. Thus, land use change had little effect on total annual ET in the study area but a great impact on its spatial distribution, and the effect of land use change on ET decreased with in- creasing precipitation. ET was most sensitive to the interconversion between forest and unused land, and was least sen- sitive to the interconversion between cropland and low-covered grassland. 展开更多
关键词 evapotranspiration (et land use change plant-available water coefficient alpine area Three-RiverHeadwaters (TRH) region Qinghai-Tibet Plateau
下载PDF
Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau 被引量:12
8
作者 LI Jie JIANG Sha +4 位作者 WANG Bin JIANG Wei-wei TANG Yan-hong DU Ming-yuan GU Song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第8期1396-1401,共6页
To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the e... To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the eddy covariance method. The ratio of annual ET to precipitation (P) of meadow ecosystem was about 60%, but varied greatly with the change of season from summer to winter. The annual ET/P in meadow was lower than that in shrub, steppe and wetland ecosystems of this plateau. The incident solar radiation (Rs) received by the meadow was obviously higher than that of lowland in the same latitude; however the ratio of net radiation (Rn) to Rs with average annual value of 0.44 was significantly lower than that in the same latitude. The average annual ET was about 390 mm for 2002-2005, of which more than 80% occurred in growing season from May to September. The energy consumed on the ET was about 44% of net radiation in growing season, which was lower than that of shrub, steppe and wetland on this plateau. This study demonstrates that the Kobresia meadow may prevent the excessive water loss through evapotranspiration from the ecosystem into the atmosphere in comparison to the shrub, steppe and wetland ecosystems of the Qinghai-Tibetan Plateau. 展开更多
关键词 eddy covariance evapotranspiration net radiation PRECIPITATION Qinghai-Tibetan Plateau
下载PDF
Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture 被引量:10
9
作者 QIU Guo-yu LI Hong-yong +3 位作者 ZHANG Qing-tao CHEN Wan LIANG Xiao-jian LI Xiang-ze 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第8期1307-1315,共9页
The temperature difference between an urban space and surrounding non-urban space is called the urban heat island effect (UHI). Global terrestrial evapotranspiration (ET) can consume 1.4803x1023joules (J) of ene... The temperature difference between an urban space and surrounding non-urban space is called the urban heat island effect (UHI). Global terrestrial evapotranspiration (ET) can consume 1.4803x1023joules (J) of energy annually, which is about 21.74% of the total available solar energy at the top of atmosphere, whereas annual human energy use is 4.935× 1020 J, about 0.33% of annual ET energy consumption. Vegetation ET has great potential to reduce urban and global temperatures. Our literature review suggests that vegetation and urban agricultural ET can reduce urban temperatures by 0.5 to 4.0℃. Green roofs (including urban agriculture) and water bodies have also been shown to be effective ways of reducing urban temperatures. The cooling effects on the ambient temperature and the roof surface temperature can be 0.24-4.0℃ and 0.8-60.0℃, respectively. The temperature of a water body (including urban aquaculture) can be lower than the temperature of the surrounding built environment by between 2 and 6℃, and a water body with a 16 m2 surface area can cool up to 2 826 m3 of nearby space by 1℃. Based on these findings, it can be concluded that the increase of evapotranspiration in cities, derived from vegetation, urban agriculture, and water body, can effectively mitigate the effect of urban heat islands. 展开更多
关键词 evapotranspiration urban heat island VEGetATION TEMPERATURE
下载PDF
How Does the Partitioning of Evapotranspiration and Runoff between Different Processes Affect the Variability and Predictability of Soil Moisture and Precipitation? 被引量:9
10
作者 Robert E.Dickinson Guiling WANG +1 位作者 Xubin Zeng 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期475-478,共4页
Water stored as part of the land surface is lost to evapotranspiration and runoff on different time scales, and the partitioning between these time scales is important for modeling soil water in a climate model. Diffe... Water stored as part of the land surface is lost to evapotranspiration and runoff on different time scales, and the partitioning between these time scales is important for modeling soil water in a climate model. Different time scales are imposed on evapotranspiration primarily because it is derived from different reservoirs with different storage capacities, from the very rapid evaporation of canopy stores to the slow removal by transpiration of rooting zone soil moisture. Runoff likewise ranges in time scale from rapid surface terms to the slower base-flow. The longest time scale losses of water determine the slow variation of soil moisture and hence the longer time scale effects of soil moisture on precipitation. This paper shows with a simple analysis how shifting the partitioning of evapotranspiration between the different reservoirs affects the variability of soil moisture and precipitation. In particular, it is concluded that a shift to shorter time scale reservoirs shifts the variance of precipitation from that which is potentially predictable to unpredictable. 展开更多
关键词 evapotranspiration climate model land surface coupling
下载PDF
Trends in major and minor meteorological variables and their influence on reference evapotranspiration for mid Himalayan region at east Sikkim, India 被引量:1
11
作者 Shweta YADAV Proloy DEB +2 位作者 Sonu KUMAR Vanita PANDEY Pankaj Kumar PANDEY 《Journal of Mountain Science》 SCIE CSCD 2016年第2期302-315,共14页
Abstract: Estimation of evapotranspiration (ET) for mountain ecosystem is of absolute importance since it serves as an important component in balancing the hydrologic cycle. The present study evaluates the performa... Abstract: Estimation of evapotranspiration (ET) for mountain ecosystem is of absolute importance since it serves as an important component in balancing the hydrologic cycle. The present study evaluates the performance of original and location specific calibrated Hargreaves equation (HARG) with the estimates of Food and Agricultural Organization (FAO) Penman Monteith (PM) method for higher altitudes in East Sikkim, India. The results show that the uncalibrated HARG model underestimates ET0 by 0.35 mm day^-1 whereas the results are significantly improved by regional calibration of the model. In addition, this paper also presents the variability in the trajectory associated with the climatic variables with the changing climate in the study site. Non- parametric Mann-Kendall (MK) test was used to investigate and understand the mean monthly trend of eight climatic parameters including reference evapotranspiration (ET0) for the period of 1985 - 2009. Trend of ET0 was estimated for the calculations done by FAO PM equation. The outcomes of the trend analysis show significant increasing (p ≤ 0.05) trend represented by higher Z-values, through MK test, for net radiation (Rn), maximum temperature (Tmax) and minimum temperature (Train), especially in the first months of the year. Whereas, significant (0.01 ≥ p ≤0.05) decreasing trend in vapor pressure deficit (VPD) and precipitation (P) is observed throughout the year. Declining trend in sunshine duration, VPD and ET0 is found in spring (March - May) and monsoon (June - November) season. The result displays significant (0.01≤ p ≤0.05) decreasing ET0 trend between (June - December) except in July, exhibiting the positive relation with VPD followed by sunshine duration at the station. Overall, the study emphasizes the importance of trend analysis of ET0 and other climatic variables for efficient planning and managing the agricultural practices, in identifying the changes in the meteorological parameters and to accurately assess the hydrologic water balance of the hilly regions. 展开更多
关键词 Reference evapotranspiration (et0) Climatic variables Trend analysis Mann-Kendall's test Monthly variation East Sikkim hilly region
下载PDF
Sensitivity of Potential Evapotranspiration Estimation to the Thornthwaite and Penman–Monteith Methods in the Study of Global Drylands 被引量:7
12
作者 Qing YANG Zhuguo MA +1 位作者 Ziyan ZHENG Yawen DUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第12期1381-1394,共14页
Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(... Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change. 展开更多
关键词 potential evapotranspiration global drylands Thornthwaite Penman–Monteith
下载PDF
Effects of grazing on net primary productivity,evapotranspiration and water use efficiency in the grasslands of Xinjiang,China 被引量:10
13
作者 HUANG Xiaotao LUO Geping +1 位作者 YE Feipeng HAN Qifei 《Journal of Arid Land》 SCIE CSCD 2018年第4期588-600,共13页
Grazing is a main human activity in the grasslands of Xinjiang, China. It is vital to identify the effects of grazing on the sustainable utilization of local grasslands. However, the effects of grazing on net primary ... Grazing is a main human activity in the grasslands of Xinjiang, China. It is vital to identify the effects of grazing on the sustainable utilization of local grasslands. However, the effects of grazing on net primary productivity (NPP), evapotranspiration (ET) and water use efficiency (WUE) in this region remain unclear. Using the spatial Biome-BGC grazing model, we explored the effects of grazing on NPP, ET and WUE across the different regions and grassland types in Xinjiang during 1979-2012. NPP, ET and WUE under the grazed scenario were generally lower than those under the ungrazed scenario, and the differences showed increasing trends over time. The decreases in NPP, ET and WUE varied significantly among the regions and grassland types. NPP decreased as follows: among the regions, Northern Xinjiang (16.60 g C/(m2·a)), Tianshan Mountains (15.94 g C/(m2·a)) and Southern Xinjiang (-3.54 g C/(m2·a)); and among the grassland types, typical grasslands (25.70 g C/(m2·a)), swamp meadows (25.26 g C/(m2·a)), mid-mountain meadows (23.39 g C/(m2·a)), alpine meadows (6.33 g C/(m2·a)), desert grasslands (5.82 g C/(m2·a)) and saline meadows (2.90 g C/(me.a)). ET decreased as follows: among the regions, Tianshan Mountains (28.95 mm/a), Northern Xinjiang (8.11 mm/a) and Southern Xinjiang (7.57 mm/a); and among the grassland types, mid-mountain meadows (29.30 mm/a), swamp meadows (25.07 mm·a), typical grasslands (24.56 mm/a), alpine meadows (20.69 mm/a), desert grasslands (11.06 mm/a) and saline meadows (3.44 mm/a). WUE decreased as follows: among the regions, Northern Xinjiang (0.053 g C/kg H2O), Tianshan Mountains (0.034 g C/kg H2O) and Southern Xinjiang (0.012 g C/kg H2O); and among the grassland types, typical grasslands (0.0609 g C/kg H2O), swamp meadows (0.0548 g C/kg H2O), mid-mountain meadows (0.0501 g C/kg H2O), desert grasslands (0.0172 g C/kg H2O), alpine meadows (0.0121 g C/kg H2O) and saline meadows (0.0067 g C/kg H2O). In general, the decreases in NPP and WUE were more significant in the regions with relatively high levels of vegetation growth because of the high grazing intensity in these regions. The decreases in ET were significant in mountainous areas due to the terrain and high grazing intensity. 展开更多
关键词 grazing effect grassland type net primary productivity evapotranspiration water use efficiency BiomeBGC grazing model
下载PDF
Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China 被引量:6
14
作者 Jie Zhao Zong-xue Xu +1 位作者 De-peng Zuo Xu-ming Wang 《Water Science and Engineering》 EI CAS CSCD 2015年第1期1-8,共8页
On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB) during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0) and key meteorol... On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB) during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0) and key meteorological factors that affect ET0 were analyzed using the Mann- Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteo- rological factors to the temporal variation of ET0, a sensitivity coefficient method was employed in this study. The results show that: (1) mean annual air temperature significantly increased at all 15 meteorological stations, while the mean annual ET0 decreased at most of sites; (2) the evaporation paradox did exist in the HRB, while the evaporation paradox was not continuous in space and time; and (3) relative humidity was the most sensitive meteorological factor with regard to the temporal variation of ET0 in the HRB, followed by wind speed, air temperature, and solar radiation. Air temperature and solar radiation contributed most to the temporal variation of ETo in the upper reaches; solar radiation and wind speed were the determining factors for the temporal variation of ET0 in the middle-lower reaches. 展开更多
关键词 Reference evapotranspiration Evaporation paradox Meteorological factor Heihe River Basin
下载PDF
Spatial-temporal evolution of vegetation evapotranspiration in Hebei Province,China 被引量:5
15
作者 WANG Qian-feng TANG Jia +6 位作者 ZENG Jing-yu QU Yan-ping ZHANG Qing SHUI Wei WANG Wu-lin YI Lin LENG Song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第9期2107-2117,共11页
Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resou... Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resource cycles. The time-series data set from the remote sensing MOLDS product (MOD16) was used to study the spatial-temporal evolution of vegetation evapotranspiration in salinized areas during 2000-2014 by analyzing the variability, spatial patterns and Mann-Kendall (MK) nonparametric trends for the time series. The results indicate that inter-annual and intra-annual variations of ET across various vegetated areas show seasonal changes, with the abnormal months identified. The Cultivated land displays a greater degree of spatial heterogeneity and the spatial pattern of ET in the area covered by broadleaved deciduous forests corresponds to a higher ET rate and increased water consumption. Awidespread decline of ET is observed only in cultivated areas. However, agricultural cultivation doesn't worsen water shortage and soil salinization problems in the region, and water shortage problems are worsening for other vegetated areas. This research provides a basis of reference for the reasonable allocation of water resources and restructuring of vegetation patterns in salinized areas. 展开更多
关键词 evapotranspiration Hebei Province MODIS spatial pattern VEGetATION spatial-temporal evolution
下载PDF
Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District 被引量:5
16
作者 Xu-ming WANG Hai-jun LIU +1 位作者 Li-wei ZHANG Rui-hao ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期250-266,共17页
Linhe National Meteorological Station, a representative weather station in the Hetao Irrigation District of China, was selected as the research site for the present study. Changes in climatic variables and reference e... Linhe National Meteorological Station, a representative weather station in the Hetao Irrigation District of China, was selected as the research site for the present study. Changes in climatic variables and reference evapotranspiration (ET0 ) (estimated by the Penman-Monteith method) were detected using Mann-Kendall tests and Sen's slope estimator, respectively. The authors analyzed the relationship between the ET0 change and each climatic variable's change. From 1954 to 2012, the air temperature showed a significant increasing trend, whereas relative humidity and wind speed decreased dramatically. These changes resulted in a slight increase in ETo. The radiative component of total ET0 increased from 50% to 57%, indicating that this component made a greater contribution to the increase in total ETo than the aerodynamic component, especially during the crop growing season (from April to October). The sensitivity analysis showed that ETo in Hetao is most sensitive to mean daily air temperature (11.8%), followed by wind speed (-7.3%) and relative humidity (4.8%). Changes in sunshine duration had only a minor effect on ET0 over the past 59 years. 展开更多
关键词 climatic variables reference evapotranspiration change trend Mann-Kendall test sensitivity analysis
下载PDF
Spatial variation of reference crop evapotranspiration on Tibetan Plateau 被引量:4
17
作者 Yong-hong YANG Zhan-yu ZHANG Xin-yi XIANG 《Water Science and Engineering》 EI CAS 2009年第1期112-120,共9页
This study is based on meteorological observation data collected at 38 weather stations on the Tibetan Plateau over several decades. Daily reference crop evapotranspiration (ETo) was calculated with the FAO-56 stand... This study is based on meteorological observation data collected at 38 weather stations on the Tibetan Plateau over several decades. Daily reference crop evapotranspiration (ETo) was calculated with the FAO-56 standard Penman-Monteith formula. A test of normality was performed with Statistica 6.0 software, isotropic and anisotropic semi-variogram analysis was conducted with the GS+ (geostatistics for the environmental sciences) system for Windows 7.0, and the characteristics of spatial variation of daily ETo were obtained. The following results can be obtained Daily ETo for different periods on the Tibetan Plateau are distributed normally; Except for daily ETo in the E-W (east-west) direction in the summer, which showed a slight negative correlation with distance change, the Moran's indexes of daily ETo for different periods in all directions on the Tibetan Plateau within a 100-km distance were positive, demonstrating a positive correlation with distance change; Variograms of daily ETo in June, the dry season, the wet season, as well as annual average daily ETo fit well with the Gaussian model; A variogram of daily ETo in December fit well with the exponential model; Variograms of daily ETo for the four seasons fit well with the linear With sill model. 展开更多
关键词 reference crop evapotranspiration Penman-Monteith formula semi-variogram spatial variation tibetan Plateau
下载PDF
Estimation of Evapotranspiration from Faber Fir Forest Ecosystem in the Eastern Tibetan Plateau of China Using SHAW Model 被引量:4
18
作者 Zhifang Yin Hua Ouyang +3 位作者 Xingliang Xu Caiping Zhou Feng Zhang Bin Shao 《Journal of Water Resource and Protection》 2010年第2期143-153,共11页
Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydro... Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydrologic process in most forest systems. SHAW, as a physically based, hydrological model, provides a useful tool for understanding and analyzing evapotranspiration processes. Using the measured data of a faber fir forest ecosystem in eastern Tibetan Plateau, this paper assessed the model performance in simulating evapotranspiration and variability and transferability of the model parameters. Comparison of the simulated results by SHAW to the measured data showed that SHAW performed satisfactorily. Based on analyzing the simulated results by the calibrated and validated SHAW, some ET characteristics of faber fir forest ecosys-tem in the eastern Tibetan Plateau were found: 1) Daily plant transpiration is low, and daily ET mainly comes from surface evaporation including canopy, litter and soil evaporation. Peak ET rate was approxi-mately 4mm/day, occurring around late July. 2) Solar radiation is the most important factor accounting for daily ET variation, while air temperature is the secondary, wind speed and air relative humidity are minor and soil water storage is the least important among all the related factors. 3) The ratio of annual ET to pre-cipitation for the faber fir forest ecosystem in eastern Tibetan Plateau is low (18%) compared with the other forest ecosystems owing to high-elevation, high atmospheric humidity and low annual temperature. 展开更多
关键词 evapotranspiration FABER FIR Forest TIBetAN PLATEAU SHAW
下载PDF
Evapotranspiration and Soil Moisture Balance for Vegetative Restoration in a Gully Catchment on the Loess Plateau, China 被引量:15
19
作者 HUANG Yi-Long CHEN Li-Ding +2 位作者 FU Bo-Jie ZHANG Li-Ping WANG Yan-Lin 《Pedosphere》 SCIE CAS CSCD 2005年第4期509-517,共9页
Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana rnicrophylla), t... Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana rnicrophylla), two woodlands (Prunus armeniaca var. ansu and Pinus tabulaeformis), cultivated fallow, and farmland (Triticum aestiuum L.) in order to obtain a better understanding of soil moisture balance principles and to improve vegetation restoration efficiency for ecological rebuilding on the plateau. Average runoff from cultivated fallow was very high, reaching 10.3% of the seasonal rainfall. Evapotranspiration under T. aestivurn was not significantly different from natural grasslands. Compared with natural grass, evapotranspiration was significantly greater (P 〈 0.05) in 2002 and there was an increase in soil moisture depleted in the 1-3 m soil under P. armeniaca, P. tabulaeformis and C. microphylla. During the two years of the study the average soil moisture (0-100 cm soil profile) of T. aestivurn was generally the highest, with P. armeniaca, P. tabulaeformis and C. rnicrophylla usually the lowest. Thus, according to the soil moisture balance principle for this area the planned reforestation project was not ecologically reasonable. Reducing human disturbance and restoration with grass could be more effective. 展开更多
关键词 ecological restoration evapotranspiration GULLY Loess Plateau soil moisture balance
下载PDF
Estimation of evapotranspiration with drainage lysimeters in the Taihang Mountain area,China 被引量:3
20
作者 YANG Fan ZHANG Wan-jun 《Forestry Studies in China》 CAS 2009年第4期219-224,共6页
In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local sh... In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local shrub, Vitex negundo var. heterophylla Rebd. and a mixture of both communities. The ET was measured using level lysimeters (with a slope of 0°) and slope lysimeters (with a slope of 25°). In general, the measured ET was higher in the level lysimeters than in the slope lysimeters because of the water loss of surface runoff from the slope lysimeter. The total ETs over the growing season for the grass, shrub, and the mixture were 730.4, 742.0 and 790.7 mm, respectively in the level lysimeters, and 535.5, 504.1 and 540.1 mm, respectively in the slope lysimeters. In addition, the monthly ET peaked in August and had close linear relationship with leaf area index. The drainage lysimeter is an effective tool to estimate plant ET in mountain areas. The results from this research would provide scientific information for the vegetation recovery and sustainable development of forestry in the TM areas. 展开更多
关键词 evapotranspiration water balance drainage lysimeter leaf area index Taihang Mountain area
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部