随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,...随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,基于动态实时电价、电池荷电量、电池损耗补偿、额外参与激励等因素建立充放电意愿模型,在此基础上得到改进的EV充放电模型;然后,以PIES总成本最小和EV充电费用最小为目标建立双层优化调度模型,通过Karush-Kuhn-Tucker(KKT)条件将内层模型转化为外层模型的约束条件,从而快速稳定地实现单层模型的求解;最后,进行仿真求解,设置3种不同场景,对比所提模型与一般充放电意愿模型,验证了文中所提引入EV充放电意愿模型的PIES双层优化调度的有效性和可行性。展开更多
Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increas...Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.展开更多
文摘随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,基于动态实时电价、电池荷电量、电池损耗补偿、额外参与激励等因素建立充放电意愿模型,在此基础上得到改进的EV充放电模型;然后,以PIES总成本最小和EV充电费用最小为目标建立双层优化调度模型,通过Karush-Kuhn-Tucker(KKT)条件将内层模型转化为外层模型的约束条件,从而快速稳定地实现单层模型的求解;最后,进行仿真求解,设置3种不同场景,对比所提模型与一般充放电意愿模型,验证了文中所提引入EV充放电意愿模型的PIES双层优化调度的有效性和可行性。
基金supported by the National Key Research and Development Project Intergovernmental Cooperation in Science and Technology of China(2018YFE0126900)the Key R&D Program of Lishui City(2021ZDYF12)the National Natural Science Foundation of China(82271629)。
文摘Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.