Background: Estimation of tree diversity at broader scale is important for conservation planning. Tree diversity should be measured and understood in terms of diversity and evenness, two integral components to descri...Background: Estimation of tree diversity at broader scale is important for conservation planning. Tree diversity should be measured and understood in terms of diversity and evenness, two integral components to describe the structure of a biological community. Variation of the tree diversity and evenness with elevation, topographic relief, aspect, terrain shape, slope, soil nutrient, solar radiation etc. are well documented. Methods: Present study explores the variation of tree diversity (measured as Shannon diversity and evenness indices) of Majella National Park, italy with five available forest types namely evergreen oak woods, deciduous oak woods, blacWaleppo pine stands, hop-hornbeam forest and beech forest, using satellite, environmental and field data. Results: Hop-hornbeam forest was found to be most diverse and even while evergreen Oak woods was the lowest diverse and even. Diversity and evenness of forest types were concurrent to each other i.e. forest type which was more diverse was also more even. As a broad pattern, majority portion of the study area belonged to medium diversity and high evenness class. Conclusions: Satellite images and other GIS data proved useful tools in monitoring variation of tree diversity and evenness across various forest types. Present study findings may have implications in prioritizing conservation zones of high tree diversity at Majella.展开更多
Habitat quality is an important indicator for evaluating the quality of ecosystem.The Qinghai Province section of the Yellow River Basin plays an important role in the ecological protection of the upper reaches of the...Habitat quality is an important indicator for evaluating the quality of ecosystem.The Qinghai Province section of the Yellow River Basin plays an important role in the ecological protection of the upper reaches of the Yellow River Basin.To comprehensively analysis the alterations of habitat quality in the Qinghai Province section of the Yellow River Basin,this study utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to calculate the habitat quality index and analyze the spatio-temporal variation characteristics of habitat quality in the study area from 2000 to 2022,and calculated seven landscape pattern indices(number of patches,patch density,largest patch index(LPI),landscape shape index(LSI),contagion index(CONTAG),Shannon diversity index,and Shannon evenness index)to research the variation of landscape pattern in the study area.The results showed that the number of patches,patch density,LPI,LSI,Shannon diversity index,and Shannon evenness index increased from 2000 to 2022,while the CONTAG decreased,indicating that the landscape pattern in the Qinghai Province section of the Yellow River Basin changed in the direction of distribution fragmentation,shape complexity,and heterogeneity.The average value of the habitat quality index in the Qinghai Province section of the Yellow River Basin from 2000 to 2022 was 0.90.Based on the value of habitat quality index,we divided the level of habitat quality into five categories:lower(0.00-0.20),low(0.20-0.40),moderate(0.40-0.60),high(0.60-0.80),and higher(0.80-1.00).Most areas were at the higher habitat quality level.The lower habitat quality patches were mainly distributed in Longyang Gorge and Yellow River-Huangshui River Valley.From 2000 to 2022,the habitat quality in most areas was stable;the increase areas were mainly distributed in Guinan County,while the decrease areas were mainly distributed in Xining City,Maqen County,Xinghai County,Qumarleb County,and Darlag County.To show the extent of habitat quality variation,we calculated Sen index.The results showed that the higher habitat quality area had a decrease trending,while other categories had an increasing tendency,and the decreasing was faster than increasing.The research results provide scientific guidance for promoting ecological protection and high-quality development in the Qinghai Province section of the Yellow River Basin.展开更多
With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the imp...With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010-July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1,256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagel lares was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.展开更多
Heavy metal pollution poses a serious hazard to human health,and microbial remediation of heavy metals in soil has been widely studied.A group of ascomycetes classified as dark septate endophytes(DSEs)colonize plant r...Heavy metal pollution poses a serious hazard to human health,and microbial remediation of heavy metals in soil has been widely studied.A group of ascomycetes classified as dark septate endophytes(DSEs)colonize plant roots and benefit host plants under abiotic stress conditions.In this study,Phragmites australis,a common remediation plant in the Baiyang Lake in North China,was investigated.Soils and roots of P.australis were collected in typical heavy metal-contaminated sites,and the species diversity and community structure of DSEs in P.australis roots were studied.In addition,DSE strains were isolated,cultured,and tested for their tolerance to Cd stress.The results showed that DSEs occurred extensively in P.australis roots,forming typical dark septate hyphae,with a total colonization rate of 19.7%–83.1%.Morphological and internal transcribed spacer sequencing analyses were used to identify 10 species within 9 genera of DSE fungi.Among these fungi,6 strains with considerable resistance to Cd stress were identified.The biomasses of Poaceascoma helicoides,Alternaria doliconidium,and Acrocalymma vagum strains increased as the Cd levels increased.These results can not only help to understand plant-DSE interactions in wetland environments,but also provide a theoretical basis for making full use of DSE fungi to alleviate heavy metal contamination in soil.展开更多
文摘Background: Estimation of tree diversity at broader scale is important for conservation planning. Tree diversity should be measured and understood in terms of diversity and evenness, two integral components to describe the structure of a biological community. Variation of the tree diversity and evenness with elevation, topographic relief, aspect, terrain shape, slope, soil nutrient, solar radiation etc. are well documented. Methods: Present study explores the variation of tree diversity (measured as Shannon diversity and evenness indices) of Majella National Park, italy with five available forest types namely evergreen oak woods, deciduous oak woods, blacWaleppo pine stands, hop-hornbeam forest and beech forest, using satellite, environmental and field data. Results: Hop-hornbeam forest was found to be most diverse and even while evergreen Oak woods was the lowest diverse and even. Diversity and evenness of forest types were concurrent to each other i.e. forest type which was more diverse was also more even. As a broad pattern, majority portion of the study area belonged to medium diversity and high evenness class. Conclusions: Satellite images and other GIS data proved useful tools in monitoring variation of tree diversity and evenness across various forest types. Present study findings may have implications in prioritizing conservation zones of high tree diversity at Majella.
基金supported by the Demonstration Project of Integrated Ecological Rehabilitation Technology for Key Soil and Water Erosion Areas in the Yellow River Valley(2021-SF-134).
文摘Habitat quality is an important indicator for evaluating the quality of ecosystem.The Qinghai Province section of the Yellow River Basin plays an important role in the ecological protection of the upper reaches of the Yellow River Basin.To comprehensively analysis the alterations of habitat quality in the Qinghai Province section of the Yellow River Basin,this study utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to calculate the habitat quality index and analyze the spatio-temporal variation characteristics of habitat quality in the study area from 2000 to 2022,and calculated seven landscape pattern indices(number of patches,patch density,largest patch index(LPI),landscape shape index(LSI),contagion index(CONTAG),Shannon diversity index,and Shannon evenness index)to research the variation of landscape pattern in the study area.The results showed that the number of patches,patch density,LPI,LSI,Shannon diversity index,and Shannon evenness index increased from 2000 to 2022,while the CONTAG decreased,indicating that the landscape pattern in the Qinghai Province section of the Yellow River Basin changed in the direction of distribution fragmentation,shape complexity,and heterogeneity.The average value of the habitat quality index in the Qinghai Province section of the Yellow River Basin from 2000 to 2022 was 0.90.Based on the value of habitat quality index,we divided the level of habitat quality into five categories:lower(0.00-0.20),low(0.20-0.40),moderate(0.40-0.60),high(0.60-0.80),and higher(0.80-1.00).Most areas were at the higher habitat quality level.The lower habitat quality patches were mainly distributed in Longyang Gorge and Yellow River-Huangshui River Valley.From 2000 to 2022,the habitat quality in most areas was stable;the increase areas were mainly distributed in Guinan County,while the decrease areas were mainly distributed in Xining City,Maqen County,Xinghai County,Qumarleb County,and Darlag County.To show the extent of habitat quality variation,we calculated Sen index.The results showed that the higher habitat quality area had a decrease trending,while other categories had an increasing tendency,and the decreasing was faster than increasing.The research results provide scientific guidance for promoting ecological protection and high-quality development in the Qinghai Province section of the Yellow River Basin.
基金supported by the Ministry of Science and Technology of P.R.China under grant contracts (No.2010CB428903)the National Natural Science Foundation of China (No.41306112)+3 种基金the National Marine Public Welfare Research Project of China (Nos.201305043,200805069)the Zhejiang Provincial Natural Science Foundation (Nos.LY13D060004,Y5110131)the Marine Science Foundation of State Oceanic Administration for Youth (Nos.2013140,2013144)the Basic Scientific Research Fund of SIO,China (Nos.JG1311,JG1221)
文摘With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010-July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1,256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagel lares was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.
基金supported by the National Natural Science Foundation of China(Nos.31800345 and 31770561)the National Science Foundation of Hebei Province,China(Nos.C2020201043 and 22E50029D)+1 种基金the Natural Science Interdisciplinary Research Program of Hebei University,China(No.DXK202311)the Post-graduate’s Innovation Fund Project of Hebei Province,China(No.CXZZSS2023010)。
文摘Heavy metal pollution poses a serious hazard to human health,and microbial remediation of heavy metals in soil has been widely studied.A group of ascomycetes classified as dark septate endophytes(DSEs)colonize plant roots and benefit host plants under abiotic stress conditions.In this study,Phragmites australis,a common remediation plant in the Baiyang Lake in North China,was investigated.Soils and roots of P.australis were collected in typical heavy metal-contaminated sites,and the species diversity and community structure of DSEs in P.australis roots were studied.In addition,DSE strains were isolated,cultured,and tested for their tolerance to Cd stress.The results showed that DSEs occurred extensively in P.australis roots,forming typical dark septate hyphae,with a total colonization rate of 19.7%–83.1%.Morphological and internal transcribed spacer sequencing analyses were used to identify 10 species within 9 genera of DSE fungi.Among these fungi,6 strains with considerable resistance to Cd stress were identified.The biomasses of Poaceascoma helicoides,Alternaria doliconidium,and Acrocalymma vagum strains increased as the Cd levels increased.These results can not only help to understand plant-DSE interactions in wetland environments,but also provide a theoretical basis for making full use of DSE fungi to alleviate heavy metal contamination in soil.