The Center for Hydrometeorology and Remote Sensing at the University of California, Irvine (CHRS) has been collaborating with UNESCO's International Hydrological Program (IHP) to build a facility for forecasting ...The Center for Hydrometeorology and Remote Sensing at the University of California, Irvine (CHRS) has been collaborating with UNESCO's International Hydrological Program (IHP) to build a facility for forecasting and mitigating hydrological disasters. This collaboration has resulted in the development of the Water and Development Information for Arid Lands-- a Global Network (G-WADI) PERSIANN-CCS GeoServer, a near real-time global precipitation visualization and data service. This GeoServer pro- vides to end-users the tools and precipitation data needed to support operational decision making, research and sound water man- agement. This manuscript introduces and demonstrates the practicality of the G-WADI PERSIANN-CCS GeoServer for monitor- ing extreme precipitation events even over regions where ground measurements are sparse. Two extreme events are analyzed. The first event shows an extreme precipitation event causing widespread flooding in Beijing, China and surrotmding districts on July 21, 2012. The second event shows tropical storm Nock-Ten that occurred in late July of 2011 causing widespread flooding in Thailand. Evaluation of PERSIANN-CCS precipitation over Thailand using a rain gauge network is also conducted and discussed.展开更多
Togo’s economy is heavily dependent on rainfed agriculture. Therefore, anomalies in precipitation can have a significant impact on crop yields, affecting food production and security. Thus, monitoring anomalous clima...Togo’s economy is heavily dependent on rainfed agriculture. Therefore, anomalies in precipitation can have a significant impact on crop yields, affecting food production and security. Thus, monitoring anomalous climate conditions in Togo through the combination of precipitation satellite-based data and Standard Precipitation Index (SPI) help anticipate the development of drought scenarios or excessive rainfall, allowing farmers to adjust their strategies and minimize losses. Continuous and adequate spatial monitoring of these climate anomalies provided by satellite-based products can be central to an effective early warning system (EWS) implementation in Togo. Precipitation satellite-based products have been presented invaluable tools for assessing droughts and , offering timely and comprehensive data that supports a wide range of applications. In this study, we applied the Integrated Multi-satellite Retrievals for GPM (IMERG) rainfall product, a unified satellite global precipitation product developed by NASA, to identify and characterize the severity of dry and wet climate events in Togo during the period from 2001 to 2019. The Standard Precipitation Index (SPI), as the main index recommended by the World Meteorological Organization to monitor drought wide world, was selected as the reference index to monitor dry and wet climate events across Togo regions. The results show two distinct major climate periods in Togo in the timeframe analyzed (2001-2019), one dominated by wet events from 2008 to 2010, and a second marked by severe and extreme dry events from 2013 to 2015;MERG rainfall and SPI combination were able to capture these events consistently.展开更多
Users of the internet often wish to follow certain news events, and the interests of these users often overlap. General search engines (GSEs) cannot be used to achieve this task due to incomplete coverage and lack o...Users of the internet often wish to follow certain news events, and the interests of these users often overlap. General search engines (GSEs) cannot be used to achieve this task due to incomplete coverage and lack of freshness. Instead, a broker is used to regularly query the built-in search engines (BSEs) of news and social media sites. Each user defines an event profile consisting of a set of query rules called event rules (ERs). To ensure that queries match the semantics of BSEs, ERs are transformed into a disjunctive normal form, and separated into conjunctive clauses (atomic event rules, AERs). It is slow to process all AERs on BSEs, and can violate query submission rate limits. Accordingly, the set of AERs is reduced to eliminate AERs that are duplicates, or logically contained by other AERs. Five types of event are selected for experimental comparison and analysis, including natural disasters, accident disasters, public health events, social security events, and negative events of public servants. Using 12 BSEs, 85 ERs for five types of events are defined by five users. Experimental comparison is conducted on three aspects: event rule reduction ratio, number of collected events, and that of related events. Experimental results in this paper show that event rule reduction effectively enhances the efficiency of crawling.展开更多
This article analyzed the importance of information monitoring and quick response on agricultural focuses and significant events, proposed the workflow and technical framework for information monitoring and quick resp...This article analyzed the importance of information monitoring and quick response on agricultural focuses and significant events, proposed the workflow and technical framework for information monitoring and quick response based on modern information technologies, and explained key technologies during implementation and the functional structure for prototype system of the technical support platform.展开更多
Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological...Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological risk management, hydroelectric power, road and tourism. Both conventional long-range radars and rain-gauges suffer from measurement errors and difficulties in precipitation estimation. For efficient monitoring operation of localized rain events of limited extension and of small basins of interest, an unrealistic extremely dense rain gauge network should be needed. Alternatively C-band or S-band meteorological long range radars are able to monitor rain fields over wide areas, however with not enough space and time resolution, and with high purchase and maintenance costs. Short-range X-band radars for rain monitoring can be a valid compromise solution between the two more common rain measurement and observation instruments. Lots of scientific efforts have already focused on radar-gauge adjustment and quantitative precipitation estimation in order to improve the radar measurement techniques. After some considerations about long range radars and gauge network, this paper presents instead some examples of how X-band mini radars can be very useful for the observation of rainfall events and how they can integrate and supplement long range radars and rain gauge networks. Three case studies are presented: A very localized and intense event, a rainfall event with high temporal and spatial variability and the employ of X-band mini radar in a mountainous region with narrow valleys. The adaptability of such radar devoted to monitor rain is demonstrated.展开更多
In recent years, more and more manufacturers and operators of fleets of mobile systems have been focusing their efforts on studying and developing condi-tional maintenance, monitoring, and diagnostic strategies to cop...In recent years, more and more manufacturers and operators of fleets of mobile systems have been focusing their efforts on studying and developing condi-tional maintenance, monitoring, and diagnostic strategies to cope with an increasingly competitive, unstable, costly, and unpredictable environment. This paper proposes a case study concerning the application of a novel event management architecture, called EMH^2, to a fleet of trains. This EMH^2 architecture, which applies the holonic paradigm, aims to facilitate the monitoring and diagnosis of a fleet of mobile systems. It is based on a recursive decomposition of cooperative monitoring holons. The definition of a generic event modeling, called SurfEvent, is the second key element of the contribution. EMH^2 has been designed to be applicable to any kind of system or equipment up to fleet level. The edge computing paradigm has been adopted for implementation purpose. The EMH^2 architecture is designed to facilitate asynchronous and progressive onboard and off-board deployments. A real-world application of EMH^2 to a fleet of ten trains cur-rently in use, in collaboration with our industrial partner, Bombardier Transport, is presented. Three key perfor-mances indicators have been estimated by comparing EMH^2 with the current industrial situation. These indi-cators are (1) the number of fleet maintenance visits,(2) the time needed by a maintenance operator to investigate and diagnose, and (3) the time needed by the system to update data regarding the health status and monitoring of trains. Results obtained outperformed industrial expecta-tions. The paper finally discusses feedbacks from experi-ence and limitations of the work.展开更多
Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficien...Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficient monitoring operations need continuous, high-resolution and large-coverage data. To monitor and observe extreme rainfall events, often much localized over small basins of interest, and that could frequently causing flash floods, an unrealistic extremely dense rain gauge network should be needed. On the other hand, common large C-band or S-band long range radars do not provide the necessary spatial and temporal resolution. Simple short-range X-band mini weather radar can be a valid compromise solution. The present work shows how a single polarization, non-Doppler and non-coherent, simple and low cost X-band radar allowed monitoring three very intense rainfall events occurred near Turin during July 2014. The events, which caused damages and floods, are detected and monitored in real time with a sample rate of 1 minute and a radial spatial resolution of 60 m, thus allowing to describe the intensity of the precipitation on each small portion of territory. This information could be very useful if used by authorities in charge of Civil Protection in order to avoid inconvenience to people and to monitor dangerous situations.展开更多
Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have su...Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have successfully carried out the establishment and maintenance of 13 fixed debris flow monitoring stations over the island and 2 mobile debris flow monitoring stations. During July 2004, a powerful southwest air current brought by Mindulle Typhoon caused serious flood in central and southern Taiwan. This paper aims to describe the establishment of debris flow monitoring systems in Taiwan and the observation of the debris flow event during Mindulle Typhoon at Aiyuzi River in Shenmu Village, Nantou County by the monitoring station.展开更多
基金Partial financial support was provided by the NASA-PMM (Grant No. NNX10AK07G)the US Army Research Office project (Grant No. W911NF-11-1-0422)
文摘The Center for Hydrometeorology and Remote Sensing at the University of California, Irvine (CHRS) has been collaborating with UNESCO's International Hydrological Program (IHP) to build a facility for forecasting and mitigating hydrological disasters. This collaboration has resulted in the development of the Water and Development Information for Arid Lands-- a Global Network (G-WADI) PERSIANN-CCS GeoServer, a near real-time global precipitation visualization and data service. This GeoServer pro- vides to end-users the tools and precipitation data needed to support operational decision making, research and sound water man- agement. This manuscript introduces and demonstrates the practicality of the G-WADI PERSIANN-CCS GeoServer for monitor- ing extreme precipitation events even over regions where ground measurements are sparse. Two extreme events are analyzed. The first event shows an extreme precipitation event causing widespread flooding in Beijing, China and surrotmding districts on July 21, 2012. The second event shows tropical storm Nock-Ten that occurred in late July of 2011 causing widespread flooding in Thailand. Evaluation of PERSIANN-CCS precipitation over Thailand using a rain gauge network is also conducted and discussed.
文摘Togo’s economy is heavily dependent on rainfed agriculture. Therefore, anomalies in precipitation can have a significant impact on crop yields, affecting food production and security. Thus, monitoring anomalous climate conditions in Togo through the combination of precipitation satellite-based data and Standard Precipitation Index (SPI) help anticipate the development of drought scenarios or excessive rainfall, allowing farmers to adjust their strategies and minimize losses. Continuous and adequate spatial monitoring of these climate anomalies provided by satellite-based products can be central to an effective early warning system (EWS) implementation in Togo. Precipitation satellite-based products have been presented invaluable tools for assessing droughts and , offering timely and comprehensive data that supports a wide range of applications. In this study, we applied the Integrated Multi-satellite Retrievals for GPM (IMERG) rainfall product, a unified satellite global precipitation product developed by NASA, to identify and characterize the severity of dry and wet climate events in Togo during the period from 2001 to 2019. The Standard Precipitation Index (SPI), as the main index recommended by the World Meteorological Organization to monitor drought wide world, was selected as the reference index to monitor dry and wet climate events across Togo regions. The results show two distinct major climate periods in Togo in the timeframe analyzed (2001-2019), one dominated by wet events from 2008 to 2010, and a second marked by severe and extreme dry events from 2013 to 2015;MERG rainfall and SPI combination were able to capture these events consistently.
文摘Users of the internet often wish to follow certain news events, and the interests of these users often overlap. General search engines (GSEs) cannot be used to achieve this task due to incomplete coverage and lack of freshness. Instead, a broker is used to regularly query the built-in search engines (BSEs) of news and social media sites. Each user defines an event profile consisting of a set of query rules called event rules (ERs). To ensure that queries match the semantics of BSEs, ERs are transformed into a disjunctive normal form, and separated into conjunctive clauses (atomic event rules, AERs). It is slow to process all AERs on BSEs, and can violate query submission rate limits. Accordingly, the set of AERs is reduced to eliminate AERs that are duplicates, or logically contained by other AERs. Five types of event are selected for experimental comparison and analysis, including natural disasters, accident disasters, public health events, social security events, and negative events of public servants. Using 12 BSEs, 85 ERs for five types of events are defined by five users. Experimental comparison is conducted on three aspects: event rule reduction ratio, number of collected events, and that of related events. Experimental results in this paper show that event rule reduction effectively enhances the efficiency of crawling.
文摘This article analyzed the importance of information monitoring and quick response on agricultural focuses and significant events, proposed the workflow and technical framework for information monitoring and quick response based on modern information technologies, and explained key technologies during implementation and the functional structure for prototype system of the technical support platform.
文摘Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological risk management, hydroelectric power, road and tourism. Both conventional long-range radars and rain-gauges suffer from measurement errors and difficulties in precipitation estimation. For efficient monitoring operation of localized rain events of limited extension and of small basins of interest, an unrealistic extremely dense rain gauge network should be needed. Alternatively C-band or S-band meteorological long range radars are able to monitor rain fields over wide areas, however with not enough space and time resolution, and with high purchase and maintenance costs. Short-range X-band radars for rain monitoring can be a valid compromise solution between the two more common rain measurement and observation instruments. Lots of scientific efforts have already focused on radar-gauge adjustment and quantitative precipitation estimation in order to improve the radar measurement techniques. After some considerations about long range radars and gauge network, this paper presents instead some examples of how X-band mini radars can be very useful for the observation of rainfall events and how they can integrate and supplement long range radars and rain gauge networks. Three case studies are presented: A very localized and intense event, a rainfall event with high temporal and spatial variability and the employ of X-band mini radar in a mountainous region with narrow valleys. The adaptability of such radar devoted to monitor rain is demonstrated.
基金led within the context of a research project whose partners were Bombardier Transport, the Polytechnic University of Hauts-de-France (UPHF) and the French National Center for Scientific Research (CNRS)led with the financial support of the Chadian National Centre for Research (CNRD)
文摘In recent years, more and more manufacturers and operators of fleets of mobile systems have been focusing their efforts on studying and developing condi-tional maintenance, monitoring, and diagnostic strategies to cope with an increasingly competitive, unstable, costly, and unpredictable environment. This paper proposes a case study concerning the application of a novel event management architecture, called EMH^2, to a fleet of trains. This EMH^2 architecture, which applies the holonic paradigm, aims to facilitate the monitoring and diagnosis of a fleet of mobile systems. It is based on a recursive decomposition of cooperative monitoring holons. The definition of a generic event modeling, called SurfEvent, is the second key element of the contribution. EMH^2 has been designed to be applicable to any kind of system or equipment up to fleet level. The edge computing paradigm has been adopted for implementation purpose. The EMH^2 architecture is designed to facilitate asynchronous and progressive onboard and off-board deployments. A real-world application of EMH^2 to a fleet of ten trains cur-rently in use, in collaboration with our industrial partner, Bombardier Transport, is presented. Three key perfor-mances indicators have been estimated by comparing EMH^2 with the current industrial situation. These indi-cators are (1) the number of fleet maintenance visits,(2) the time needed by a maintenance operator to investigate and diagnose, and (3) the time needed by the system to update data regarding the health status and monitoring of trains. Results obtained outperformed industrial expecta-tions. The paper finally discusses feedbacks from experi-ence and limitations of the work.
文摘Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficient monitoring operations need continuous, high-resolution and large-coverage data. To monitor and observe extreme rainfall events, often much localized over small basins of interest, and that could frequently causing flash floods, an unrealistic extremely dense rain gauge network should be needed. On the other hand, common large C-band or S-band long range radars do not provide the necessary spatial and temporal resolution. Simple short-range X-band mini weather radar can be a valid compromise solution. The present work shows how a single polarization, non-Doppler and non-coherent, simple and low cost X-band radar allowed monitoring three very intense rainfall events occurred near Turin during July 2014. The events, which caused damages and floods, are detected and monitored in real time with a sample rate of 1 minute and a radial spatial resolution of 60 m, thus allowing to describe the intensity of the precipitation on each small portion of territory. This information could be very useful if used by authorities in charge of Civil Protection in order to avoid inconvenience to people and to monitor dangerous situations.
基金Taiwan Soil and Water Conservation Bureau (SWCB- 95-164)
文摘Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have successfully carried out the establishment and maintenance of 13 fixed debris flow monitoring stations over the island and 2 mobile debris flow monitoring stations. During July 2004, a powerful southwest air current brought by Mindulle Typhoon caused serious flood in central and southern Taiwan. This paper aims to describe the establishment of debris flow monitoring systems in Taiwan and the observation of the debris flow event during Mindulle Typhoon at Aiyuzi River in Shenmu Village, Nantou County by the monitoring station.