The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based regio...The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based region coverage control law and the adaptive tracking control law.The APF-based region coverage control law ensures the coverage task is achieved until every single stratospheric airship ends up performing station keeping where near the respective global minimum point,in which an innovative solution to the local minimum problem is put forward.The adaptive tracking control law is designed to realize motion control using tracking the desired velocity and angular velocity given by coverage control law,with the consideration of several practical control problems as unknown individual differences and external disturbances.To save resources,the combined self-/event-triggered mechanism designed therein significantly reduces the times of state information transmission and control law calculation.The effectiveness of the proposed control framework is verified through simulations.展开更多
In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The non...In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective.展开更多
Cyber-physical systems(CPSs)take on the characteristics of both multiple rates of information collection and processing and the dependency on information exchanges.The purpose of this paper is to develop a joint recur...Cyber-physical systems(CPSs)take on the characteristics of both multiple rates of information collection and processing and the dependency on information exchanges.The purpose of this paper is to develop a joint recursive filtering scheme that estimates both unknown inputs and system states for multi-rate CPSs with unknown inputs.In cyberspace,the information transmission between the local joint filter and the sensors is governed by an adaptive event-triggered strategy.Furthermore,the desired parameters of joint filters are determined by a set of algebraic matrix equations in a recursive way,and a sufficient condition verifying the boundedness of filtering error covariance is found by resorting to some algebraic operation.A state fusion estimation scheme that uses local state estimation is proposed based on the covariance intersection(CI)based fusion conception.Lastly,an illustrative example demonstrates the effectiveness of the proposed adaptive event-triggered recursive filtering algorithm.展开更多
This paper is concerned with the double sensitive fault detection filter for positive Markovian jump systems. A new hybrid adaptive event-triggered mechanism is proposed by introducing a non-monotonic adaptive law. A ...This paper is concerned with the double sensitive fault detection filter for positive Markovian jump systems. A new hybrid adaptive event-triggered mechanism is proposed by introducing a non-monotonic adaptive law. A linear adaptive event-triggered threshold is established by virtue of 1-norm inequality.Under such a triggering strategy, the original system can be transformed into an interval uncertain system. By using a stochastic copositive Lyapunov function, an asynchronous fault detection filter is designed for positive Markovian jump systems(PMJSs) in terms of linear programming. The presented filter satisfies both L_-gain(?_-gain) fault sensitivity and L_1(?_1)internal differential privacy sensitivity. The proposed approach is also extended to the discrete-time case. Finally, two examples are provided to illustrate the effectiveness of the proposed design.展开更多
In this work,a novel gradient descent method based on event-triggered strategy has been proposed,which involves integer and fractional order iteration.Firstly,the convergence of integer order iterative optimization me...In this work,a novel gradient descent method based on event-triggered strategy has been proposed,which involves integer and fractional order iteration.Firstly,the convergence of integer order iterative optimization method and the stability of its associated system with integrator dynamics are linked.Based on this result,a fractional order iteration approach has been developed by modelling the system with fractional order dynamics.Secondly,to reduce the comsumption of computation,a feedback based event-triggered mechanism has been introduced to the gradient descent method.The convergence of this new event-triggered optimization algorithm is guaranteed by using a Lyapunov method,and Zeno behavior is proved to be avoided simultaneously.Lastly,the effectiveness and advantages of the proposed algorithms are verified by numerical simulations.展开更多
This paper is concerned with the problem of input-output finite-time guaranteed cost control for a kind of time-varying systems(TVSs).To reduce the transmission burden,an aperiodic-sampling-based event-triggered mecha...This paper is concerned with the problem of input-output finite-time guaranteed cost control for a kind of time-varying systems(TVSs).To reduce the transmission burden,an aperiodic-sampling-based event-triggered mechanism is proposed with an adaptive law.And a time-varying Lyapunov functional involving some time-dependent piecewise matrices is designed.Input-output finite-time stability(IO-FTS)conditions are presented for the closed-loop system.By resorting to properties of the matrix polynomial,input-output finite-time stabilization criterions are further derived by recursive linear matrix inequalities.And the sampled-data static output feedback controller can be obtained.In addition,the corresponding optimization problem about minimum values of both the guaranteed cost bound and system output norm are established.Finally,a spring-mass-damper system illustrates the effectiveness and superiority.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number...In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.展开更多
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utiliz...This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea...Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.展开更多
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ...Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.展开更多
Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a ne...Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy.展开更多
One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon o...One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.展开更多
BACKGROUND Yigong San(YGS)is a representative prescription for the treatment of digestive disorders,which has been used in clinic for more than 1000 years.However,the mechanism of its anti-gastric cancer and regulate ...BACKGROUND Yigong San(YGS)is a representative prescription for the treatment of digestive disorders,which has been used in clinic for more than 1000 years.However,the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear.AIM To explore the mechanism of YGS anti-gastric cancer and immune regulation.METHODS Firstly,collect the active ingredients and targets of YGS,and the differentially expressed genes of gastric cancer.Secondly,constructed a protein-protein interaction network between the targets of drugs and diseases,and screened hub genes.Then the clinical relevance,mutation and repair,tumor microenvironment and drug sensitivity of the hub gene were analyzed.Finally,molecular docking was used to verify the binding ability of YGS active ingredient and hub genes.RESULTS Firstly,obtained 55 common targets of gastric cancer and YGS.The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6,EGFR,MMP2,MMP9 and TGFB1 as the hub genes.The 5 hub genes were involved in gastric carcinogenesis,staging,typing and prognosis,and their mutations promote gastric cancer progression.Finally,molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets.CONCLUSION YGS has the effect of anti-gastric cancer and immune regulation.展开更多
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction...Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.展开更多
Exercise has emerged as one of the important and effective non-drug therapies used for management of type 2 diabetes(T2D)in certain nations.The present report summarizes the latest findings from the research on the be...Exercise has emerged as one of the important and effective non-drug therapies used for management of type 2 diabetes(T2D)in certain nations.The present report summarizes the latest findings from the research on the beneficial effect of exercise on T2D.The objectives were to provide references for the theoretical study and the clinical practice of exercise-based management of T2D,in addition to identify the limitations of the existing literature,thereby provide direction for future research in this field.展开更多
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
基金supported by the Postdoctoral Science Foundation of China(Grant No.2020TQ0028)the National Natural Science Foundation of China(No.62173016)Beijing Natural Science Foundation,PRChina(No.4202038)。
文摘The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based region coverage control law and the adaptive tracking control law.The APF-based region coverage control law ensures the coverage task is achieved until every single stratospheric airship ends up performing station keeping where near the respective global minimum point,in which an innovative solution to the local minimum problem is put forward.The adaptive tracking control law is designed to realize motion control using tracking the desired velocity and angular velocity given by coverage control law,with the consideration of several practical control problems as unknown individual differences and external disturbances.To save resources,the combined self-/event-triggered mechanism designed therein significantly reduces the times of state information transmission and control law calculation.The effectiveness of the proposed control framework is verified through simulations.
基金supported by Ministry of Science and Technology of Peoples Republic of China(No.2019YFE0104800).
文摘In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective.
基金Project supported by the National Natural Science Foundation of China(Nos.62203306 and 61933007)the Shanghai Pujiang Program,China(No.22PJ1412600)the China Postdoctoral Science Foundation(No.2021M702195)。
文摘Cyber-physical systems(CPSs)take on the characteristics of both multiple rates of information collection and processing and the dependency on information exchanges.The purpose of this paper is to develop a joint recursive filtering scheme that estimates both unknown inputs and system states for multi-rate CPSs with unknown inputs.In cyberspace,the information transmission between the local joint filter and the sensors is governed by an adaptive event-triggered strategy.Furthermore,the desired parameters of joint filters are determined by a set of algebraic matrix equations in a recursive way,and a sufficient condition verifying the boundedness of filtering error covariance is found by resorting to some algebraic operation.A state fusion estimation scheme that uses local state estimation is proposed based on the covariance intersection(CI)based fusion conception.Lastly,an illustrative example demonstrates the effectiveness of the proposed adaptive event-triggered recursive filtering algorithm.
基金supported by the National Natural Science Foundation of China (62073111,62073167)the Natural Science Foundation of Hainan Province (621QN212)Science Research Funding of Hainan University (KYQD(ZR)22180)。
文摘This paper is concerned with the double sensitive fault detection filter for positive Markovian jump systems. A new hybrid adaptive event-triggered mechanism is proposed by introducing a non-monotonic adaptive law. A linear adaptive event-triggered threshold is established by virtue of 1-norm inequality.Under such a triggering strategy, the original system can be transformed into an interval uncertain system. By using a stochastic copositive Lyapunov function, an asynchronous fault detection filter is designed for positive Markovian jump systems(PMJSs) in terms of linear programming. The presented filter satisfies both L_-gain(?_-gain) fault sensitivity and L_1(?_1)internal differential privacy sensitivity. The proposed approach is also extended to the discrete-time case. Finally, two examples are provided to illustrate the effectiveness of the proposed design.
基金supported by the National Natural Science Foundation of China under Grant No.61973291。
文摘In this work,a novel gradient descent method based on event-triggered strategy has been proposed,which involves integer and fractional order iteration.Firstly,the convergence of integer order iterative optimization method and the stability of its associated system with integrator dynamics are linked.Based on this result,a fractional order iteration approach has been developed by modelling the system with fractional order dynamics.Secondly,to reduce the comsumption of computation,a feedback based event-triggered mechanism has been introduced to the gradient descent method.The convergence of this new event-triggered optimization algorithm is guaranteed by using a Lyapunov method,and Zeno behavior is proved to be avoided simultaneously.Lastly,the effectiveness and advantages of the proposed algorithms are verified by numerical simulations.
基金supported in part by the National Natural Science Foundation of China under Grant No.62103074the Natural Science Research Project of Liaoning Education Department of China under Grant Nos.JDL2019019 and JDL2020002.
文摘This paper is concerned with the problem of input-output finite-time guaranteed cost control for a kind of time-varying systems(TVSs).To reduce the transmission burden,an aperiodic-sampling-based event-triggered mechanism is proposed with an adaptive law.And a time-varying Lyapunov functional involving some time-dependent piecewise matrices is designed.Input-output finite-time stability(IO-FTS)conditions are presented for the closed-loop system.By resorting to properties of the matrix polynomial,input-output finite-time stabilization criterions are further derived by recursive linear matrix inequalities.And the sampled-data static output feedback controller can be obtained.In addition,the corresponding optimization problem about minimum values of both the guaranteed cost bound and system output norm are established.Finally,a spring-mass-damper system illustrates the effectiveness and superiority.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported in part by the National Key Research and Development Program of China(2018YFA0702200)the National Natural Science Foundation of China(52377079,62203097,62373196)。
文摘In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
基金Project supported by the National Natural Science Foundation of China(Grant No.62303016)the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02)+1 种基金the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020)the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).
文摘This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金supported by the Natural Science Foundation of Beijing,China(7214223,7212027)the Beijing Hospitals Authority Youth Programme(QML20210601)+3 种基金the Chinese Scholarship Council(CSC)scholarship(201706210415)the National Key Research and Development Program of China(2017YFC0908800)the Beijing Municipal Health Commission(PXM2020_026272_000002,PXM2020_026272_000014)the National Natural Science Foundation of China(82070293).
文摘Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
基金supported by the National Nature Science Foundation of China,the National Key Research and Development Program of China(302001109,2016YFD0300508,2017YFD0301602,2018YFD0301105)the Fujian and Taiwan Cultivation Resources Development and Green Cultivation Coordination Innovation Center,China(Fujian 2011 Project,2015-75)the Natural Science Foundation of Fujian Province,China(2022J01142)。
文摘Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.
基金supported in part by the National Natural Science Foundation of China(62273112,62061160371,61933001,51905115)the Science and Technology Planning Project of Guangzhou City(202201010758)+2 种基金the Guangzhou University-Hong Kong University of Science and Technology Joint Research Collaboration Fund(YH202205)the Open Research Fund from the Guangdong Laboratory of Artificial Intelligence and Digital Economy(Shenzhen(SZ))(GML-KF-22-27)the Korea Institute of Energy Technology Evaluation and Planning Through the Auspices of the Ministry of Trade,Industry and Energy,Republic of Korea(20213030020160)。
文摘Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy.
文摘One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.
基金Supported by Ningxia Key Research and Development Program,No.2023BEG02015Ningxia Science and Technology Benefiting People Program,No.2022CMG03064+1 种基金Ningxia Natural Science Foundation,No.2022AAC02039National Natural Science Foundation of China,No.82260879 and No.82374261.
文摘BACKGROUND Yigong San(YGS)is a representative prescription for the treatment of digestive disorders,which has been used in clinic for more than 1000 years.However,the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear.AIM To explore the mechanism of YGS anti-gastric cancer and immune regulation.METHODS Firstly,collect the active ingredients and targets of YGS,and the differentially expressed genes of gastric cancer.Secondly,constructed a protein-protein interaction network between the targets of drugs and diseases,and screened hub genes.Then the clinical relevance,mutation and repair,tumor microenvironment and drug sensitivity of the hub gene were analyzed.Finally,molecular docking was used to verify the binding ability of YGS active ingredient and hub genes.RESULTS Firstly,obtained 55 common targets of gastric cancer and YGS.The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6,EGFR,MMP2,MMP9 and TGFB1 as the hub genes.The 5 hub genes were involved in gastric carcinogenesis,staging,typing and prognosis,and their mutations promote gastric cancer progression.Finally,molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets.CONCLUSION YGS has the effect of anti-gastric cancer and immune regulation.
基金S.G.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 52272144,51972076)the Heilongjiang Provincial Natural Science Foundation of China(JQ2022E001)+4 种基金the Natural Science Foundation of Shandong Province(ZR2020ZD42)the Fundamental Research Funds for the Central Universities.H.D.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 22205048)China Postdoctoral Science Foundation(2022M710931 and 2023T160154)Heilongjiang Postdoctoral Science Foundation(LBH-Z22010)G.Y.acknowledges the financial support from the National Science Foundation of Heilongjiang Education Department(324022075).
文摘Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.
文摘Exercise has emerged as one of the important and effective non-drug therapies used for management of type 2 diabetes(T2D)in certain nations.The present report summarizes the latest findings from the research on the beneficial effect of exercise on T2D.The objectives were to provide references for the theoretical study and the clinical practice of exercise-based management of T2D,in addition to identify the limitations of the existing literature,thereby provide direction for future research in this field.
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.