Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the mil...Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.展开更多
Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the model...Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems.展开更多
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i...The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.展开更多
Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is o...Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is often not satisfied,resulting in ER rule inapplicable.In this paper,an Evidential Reasoning rule for Dependent Evidence combination(ERr-DE)is developed.Firstly,the aggregation sequence of multiple pieces of evidence is determined according to evidence reliability.On this basis,a calculation method of evidence Relative Total Dependence Coefficient(RTDC)is proposed using the distance correlation method.Secondly,as a discounting factor,RTDC is introduced into the ER rule framework,and the ERr-DE model is formulated.The aggregation process of two pieces of dependent evidence by ERr-DE is investigated,which is then generalized to aggregate multiple pieces of non-independent evidence.Thirdly,sensitivity analysis is carried out to investigate the relationship between the model output and the RTDC.The properties of sensitivity coefficient are explored and mathematically proofed.The conjunctive probabilistic reasoning process of ERr-DE and the properties of sensitivity coefficient are verified by two numerical examples respectively.Finally,the practical application of the ERr-DE is validated by a case study on the performance assessment of satellite turntable system.展开更多
To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive ...To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.展开更多
为解决中央处理器(Central Processing Unit, CPU)性能分析所面临的分析指标复杂、分析过程不具有可解释性、分析结果不可追溯的问题,提出了一种融合ER(Evidence Reasoning)和分层BRB(Belief Rule Base)的CPU性能分析模型.首先,利用ER...为解决中央处理器(Central Processing Unit, CPU)性能分析所面临的分析指标复杂、分析过程不具有可解释性、分析结果不可追溯的问题,提出了一种融合ER(Evidence Reasoning)和分层BRB(Belief Rule Base)的CPU性能分析模型.首先,利用ER算法从不同层面对处理器影响因素进行指标评估,其次,通过分层BRB实现对CPU性能的综合分析,最后,采用鲸鱼优化算法(Whale Optimization Algorithm, WOA)对模型参数优化.通过UCI数据库(University of California Irvine, UCI)计算机硬件数据集验证了模型的有效性.整个分析模型建立在ER算法上,保证了模型推理的可解释性,而分层BRB方法解决了传统BRB的组合规则爆炸问题,同时结合优化算法有效的提高模型的准确度.展开更多
In the last few years, cloud computing as a new computing paradigm has gone through significant development, but it is also facing many problems. One of them is the cloud service selection problem. As increasingly boo...In the last few years, cloud computing as a new computing paradigm has gone through significant development, but it is also facing many problems. One of them is the cloud service selection problem. As increasingly boosting cloud services are offered through the internet and some of them may be not reliable or even malicious, how to select trustworthy cloud services for cloud users is a big challenge. In this paper, we propose a multi-dimensional trust-aware cloud service selection mechanism based on evidential reasoning(ER) approach that integrates both perception-based trust value and reputation based trust value, which are derived from direct and indirect trust evidence respectively, to identify trustworthy services. Here, multi-dimensional trust evidence, which reflects the trustworthiness of cloud services from different aspects, is elicited in the form of historical users feedback ratings. Then, the ER approach is applied to aggregate the multi-dimensional trust ratings to obtain the real-time trust value and select the most trustworthy cloud service of certain type for the active users. Finally, the fresh feedback from the active users will update the trust evidence for other service users in the future.展开更多
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736+3 种基金in part by the Teaching reform project of higher education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038in part by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 andHSDSSCX2022-19in part by the Foreign Expert Project of Heilongjiang Province under Grant No.GZ20220131.
文摘Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.
基金This work was supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038+2 种基金in part by the innovation practice project of college students in Heilongjiang Province under Grant Nos.202010231009,202110231024,and 202110231155in part by the basic scientific research business expenses scientific research projects of provincial universities in Heilongjiang Province Grant Nos.XJGZ2021001in part by the Education and teaching reform program of 2021 in Heilongjiang Province under Grant No.SJGY20210457.
文摘Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems.
基金This work is supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038.
文摘The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.
基金co-supported by the National Natural Science Foundation of China (No. 61833016)the Shaanxi Outstanding Youth Science Foundation,China (No. 2020JC-34)the Shaanxi Science and Technology Innovation Team,China(No. 2022TD-24)
文摘Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is often not satisfied,resulting in ER rule inapplicable.In this paper,an Evidential Reasoning rule for Dependent Evidence combination(ERr-DE)is developed.Firstly,the aggregation sequence of multiple pieces of evidence is determined according to evidence reliability.On this basis,a calculation method of evidence Relative Total Dependence Coefficient(RTDC)is proposed using the distance correlation method.Secondly,as a discounting factor,RTDC is introduced into the ER rule framework,and the ERr-DE model is formulated.The aggregation process of two pieces of dependent evidence by ERr-DE is investigated,which is then generalized to aggregate multiple pieces of non-independent evidence.Thirdly,sensitivity analysis is carried out to investigate the relationship between the model output and the RTDC.The properties of sensitivity coefficient are explored and mathematically proofed.The conjunctive probabilistic reasoning process of ERr-DE and the properties of sensitivity coefficient are verified by two numerical examples respectively.Finally,the practical application of the ERr-DE is validated by a case study on the performance assessment of satellite turntable system.
基金supported by the Military Scientific Research Program(41401020301).
文摘To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.
文摘为解决中央处理器(Central Processing Unit, CPU)性能分析所面临的分析指标复杂、分析过程不具有可解释性、分析结果不可追溯的问题,提出了一种融合ER(Evidence Reasoning)和分层BRB(Belief Rule Base)的CPU性能分析模型.首先,利用ER算法从不同层面对处理器影响因素进行指标评估,其次,通过分层BRB实现对CPU性能的综合分析,最后,采用鲸鱼优化算法(Whale Optimization Algorithm, WOA)对模型参数优化.通过UCI数据库(University of California Irvine, UCI)计算机硬件数据集验证了模型的有效性.整个分析模型建立在ER算法上,保证了模型推理的可解释性,而分层BRB方法解决了传统BRB的组合规则爆炸问题,同时结合优化算法有效的提高模型的准确度.
基金supported by National Natural Science Foundation of China(Nos.71131002,71071045,71231004 and 71201042)
文摘In the last few years, cloud computing as a new computing paradigm has gone through significant development, but it is also facing many problems. One of them is the cloud service selection problem. As increasingly boosting cloud services are offered through the internet and some of them may be not reliable or even malicious, how to select trustworthy cloud services for cloud users is a big challenge. In this paper, we propose a multi-dimensional trust-aware cloud service selection mechanism based on evidential reasoning(ER) approach that integrates both perception-based trust value and reputation based trust value, which are derived from direct and indirect trust evidence respectively, to identify trustworthy services. Here, multi-dimensional trust evidence, which reflects the trustworthiness of cloud services from different aspects, is elicited in the form of historical users feedback ratings. Then, the ER approach is applied to aggregate the multi-dimensional trust ratings to obtain the real-time trust value and select the most trustworthy cloud service of certain type for the active users. Finally, the fresh feedback from the active users will update the trust evidence for other service users in the future.