Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were ...Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were analyzed by comparing with traditional cast-rolling. Results show that when length of cast-rolling area is 70 mm, melt temperature of head box is 670 °C, cast rolling speed is 1.3 m/min, exciting current is 10 A, center frequency is(13±1) Hz, ultrasonic power is 200 W and ultrasonic frequency is(20±0.2) kHz, the 1050 strip with the best microstructure can be prepared successfully; its center segregated layer disappears; the average grain size is reduced by about 40%; the crystal grains are distributed evenly; micro segregation decreases obviously; the precipitated phases are distributed along the grain boundaries evenly; and the tensile strength, yield strength, elongation and micro-hardness of cast-rolled strip are improved by 22.6%, 23.66%, 38.75% and 9.90%, respectively.展开更多
Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,an...Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,and their micro-morphology evolution in the SLCRB process are investigated with scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD).In the casting pool,initial aluminized coating is first generated on the copper strip surface,with the diffusion layer mainly consisting ofα(Al)+CuAl2and growing at high temperatures,with the maximum thickness of10μm.After sequent rolling below the kiss point,the diffusion layer is broken by severe elongation,which leads to an additional crack bond process with a fresh interface of virgin base metal.The average thickness is reduced from10to5μm.The reaction products,CuAl2,CuAl,and Cu9Al4,are dispersed along the rolling direction.Peeling and bending test results indicate that the fracture occurs in the aluminum substrate,and the morphology is a dimple pattern.No crack or separation is found at the bonding interface after90°-180°bending.The presented method provides an economical way to fabricate Cu/Al clad strip directly.展开更多
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t...Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming.展开更多
To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, ...To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, with birth and death element method, a thermo-mechanical coupled finite element model(FEM) was set up to explore the temperature and contact pressure distribution at the Cu/Al bonding interface in the SLCRB process. Taking these macro-scale simulation results as boundary conditions, we simulated the atom diffusion law of the bonding interface by molecular dynamics(MD) in micro-scale. The results indicate that the temperature in Cu/Al bonding interface deceases from 700 to 320 ℃ from the entrance to the exit of caster, and the peak of contact pressure reaches up to 140 MPa. The interfacial diffusion thickness depends on temperature and rolling reduction, higher temperature results in larger thickness, and the rolling reduction below kiss point leads to significant elongation deformation of cladding strip which yields more newborn interface with fresh metal and make the diffusion layer thinner. The surface roughness of Cu strip was found to be benefit to atoms diffusion in the Cu/Al bonding interface. Meanwhile, combined with the SEM-EDS observation on the microstructure and composition in the bonding interface of the experimental samples acquired from the castrolling bite, it is revealed that the rolling reduction and severe elongation deformation in the solid-solid contact zone below kiss point guarantee the satisfactory metallurgical bonding with thin and smooth diffusion layer. The bonding mechanisms of reactive diffusion, mechanical interlocking and crack bonding are proved to coexist in the SLCRB process.展开更多
In this paper three-dimensional flow field in the molten pool between unequal diameter twin rolls has been studied by BFC technology and SIMPLEC numerical method. From the computed flow pattern,the characteristic of m...In this paper three-dimensional flow field in the molten pool between unequal diameter twin rolls has been studied by BFC technology and SIMPLEC numerical method. From the computed flow pattern,the characteristic of molten steel flow has been discussed. The dynamics generated by the feeding flow and the motivation of counter-rotating twin rolls produces a recirculating flow field nearby the small roll due to the larger room and less resistant here and fluid flows along the roll surface tangential nearby large roll and extends to two side dams. There is faintly flow around the dams of molten pool展开更多
Based on twin-roll casting technology and multi-roll groove rolling technology,a Multi-Roll Solid-Liquid Cast-Rolling Bonding(MRSLCRB)process was proposed to fabricate Cu/steel cladding bars,which processes the advant...Based on twin-roll casting technology and multi-roll groove rolling technology,a Multi-Roll Solid-Liquid Cast-Rolling Bonding(MRSLCRB)process was proposed to fabricate Cu/steel cladding bars,which processes the advantages of short flow and high-efficiency.However,it is a typical 3-D thermal-fluid-mechanics coupled problem,and determining cast-rolling force is difficult during the equipment design.Therefore,the geometrical evolution of the cast-rolling area was studied,laying the foundation to establish contact boundary equations and analyze mechanical schematics and metal flow.Then,a 3-D steady-state thermal-fluid coupled simulation model,including casting roll,substrate bar,and cladding metal,was established.The Kissing Point(KP)height,average outlet temperature,and process window were predicted,and simulation results of the three-roll layout indicate that the KP distribution along the circumferential direction can be considered uniform.Hence,the engineering cast-rolling force model was derived based on the differential element method and plane deformation hypothesis.The accuracy was verified by the 3-D finite element model,and the influences of process layouts and technological parameters on the castrolling force were analyzed.Through the indirect multi-field coupled analysis method,the temperature–pressure evolution and reasonable process window can be predicted,which provides a significant basis for guiding equipment design and improving product quality.展开更多
The mechanical properties and product thickness specifications of bimetallic clad strip prepared by twin-roll casting are tightly related to the mechanical behavior of bonding interface interaction.The thermal−flow co...The mechanical properties and product thickness specifications of bimetallic clad strip prepared by twin-roll casting are tightly related to the mechanical behavior of bonding interface interaction.The thermal−flow coupled simulation and the interface pressure calculation models are established with the cast-rolling velocity as the variable.The results show that the interface temperature decreases,the interface pressure and the proportion of the thickness of the Al side increase with the decrease in cast-rolling velocity.The thinning of Cu strip mainly occurs in the backward slip zone.The higher pressure and longer solid/semi-solid contact time make the interface bonded fully,which provides favorable conditions for atomic diffusion.The inter-diffusion zone with a width of 4.9μm is attained at a cast-rolling velocity of 2.4 m/min,and the Cu side surface is nearly completely covered by aluminum.Therefore,the ductile fracture occurs on the Al side,which prevents the propagation of interface delamination cracks effectively.Meanwhile,shear effect becomes more significant at high interfacial pressure and large plastic strain,and the microstructure on Al side is composed of slender columnar crystals.Thus,the metallurgical bonding and refinement of grains on the Al side can result in higher bonding strength and tensile properties of the clad strip.展开更多
基金Project(2014CB046702)supported by National Basic Research Program of China
文摘Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were analyzed by comparing with traditional cast-rolling. Results show that when length of cast-rolling area is 70 mm, melt temperature of head box is 670 °C, cast rolling speed is 1.3 m/min, exciting current is 10 A, center frequency is(13±1) Hz, ultrasonic power is 200 W and ultrasonic frequency is(20±0.2) kHz, the 1050 strip with the best microstructure can be prepared successfully; its center segregated layer disappears; the average grain size is reduced by about 40%; the crystal grains are distributed evenly; micro segregation decreases obviously; the precipitated phases are distributed along the grain boundaries evenly; and the tensile strength, yield strength, elongation and micro-hardness of cast-rolled strip are improved by 22.6%, 23.66%, 38.75% and 9.90%, respectively.
基金Project(51474189)supported by the National Natural Science Foundation of ChinaProject(QN2015214)supported by the Educational Commission of Hebei Province,China
文摘Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,and their micro-morphology evolution in the SLCRB process are investigated with scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD).In the casting pool,initial aluminized coating is first generated on the copper strip surface,with the diffusion layer mainly consisting ofα(Al)+CuAl2and growing at high temperatures,with the maximum thickness of10μm.After sequent rolling below the kiss point,the diffusion layer is broken by severe elongation,which leads to an additional crack bond process with a fresh interface of virgin base metal.The average thickness is reduced from10to5μm.The reaction products,CuAl2,CuAl,and Cu9Al4,are dispersed along the rolling direction.Peeling and bending test results indicate that the fracture occurs in the aluminum substrate,and the morphology is a dimple pattern.No crack or separation is found at the bonding interface after90°-180°bending.The presented method provides an economical way to fabricate Cu/Al clad strip directly.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51974278)the Distinguished Young Fund of Natural Science Foundation of Hebei Province,China(E2018203446).
文摘Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming.
基金Funded by the General Program of National Natural Science Foundation of China(Nos.51474189 and 51674222)the Excellent Youth Foundation of Hebei Scientific Committee,China(No.E2018203446)the Scientific Research Foundation of the Higher Education Institutions of Hebei Province,China(No.QN2015214)
文摘To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, with birth and death element method, a thermo-mechanical coupled finite element model(FEM) was set up to explore the temperature and contact pressure distribution at the Cu/Al bonding interface in the SLCRB process. Taking these macro-scale simulation results as boundary conditions, we simulated the atom diffusion law of the bonding interface by molecular dynamics(MD) in micro-scale. The results indicate that the temperature in Cu/Al bonding interface deceases from 700 to 320 ℃ from the entrance to the exit of caster, and the peak of contact pressure reaches up to 140 MPa. The interfacial diffusion thickness depends on temperature and rolling reduction, higher temperature results in larger thickness, and the rolling reduction below kiss point leads to significant elongation deformation of cladding strip which yields more newborn interface with fresh metal and make the diffusion layer thinner. The surface roughness of Cu strip was found to be benefit to atoms diffusion in the Cu/Al bonding interface. Meanwhile, combined with the SEM-EDS observation on the microstructure and composition in the bonding interface of the experimental samples acquired from the castrolling bite, it is revealed that the rolling reduction and severe elongation deformation in the solid-solid contact zone below kiss point guarantee the satisfactory metallurgical bonding with thin and smooth diffusion layer. The bonding mechanisms of reactive diffusion, mechanical interlocking and crack bonding are proved to coexist in the SLCRB process.
文摘In this paper three-dimensional flow field in the molten pool between unequal diameter twin rolls has been studied by BFC technology and SIMPLEC numerical method. From the computed flow pattern,the characteristic of molten steel flow has been discussed. The dynamics generated by the feeding flow and the motivation of counter-rotating twin rolls produces a recirculating flow field nearby the small roll due to the larger room and less resistant here and fluid flows along the roll surface tangential nearby large roll and extends to two side dams. There is faintly flow around the dams of molten pool
基金This study was co-supported by the National Key Research and Development Program,China(No.2018YFA0707300)the National Natural Science Foundation of China(Nos.51974278 and 52205406)+2 种基金China Post Doctoral Science Foundation(No.2023M732572)the Key Science and Technology Project of Shanxi Province,China(No.20191102009)the Fundamental Research Program of Shanxi Province,China(No.202203021212289).
文摘Based on twin-roll casting technology and multi-roll groove rolling technology,a Multi-Roll Solid-Liquid Cast-Rolling Bonding(MRSLCRB)process was proposed to fabricate Cu/steel cladding bars,which processes the advantages of short flow and high-efficiency.However,it is a typical 3-D thermal-fluid-mechanics coupled problem,and determining cast-rolling force is difficult during the equipment design.Therefore,the geometrical evolution of the cast-rolling area was studied,laying the foundation to establish contact boundary equations and analyze mechanical schematics and metal flow.Then,a 3-D steady-state thermal-fluid coupled simulation model,including casting roll,substrate bar,and cladding metal,was established.The Kissing Point(KP)height,average outlet temperature,and process window were predicted,and simulation results of the three-roll layout indicate that the KP distribution along the circumferential direction can be considered uniform.Hence,the engineering cast-rolling force model was derived based on the differential element method and plane deformation hypothesis.The accuracy was verified by the 3-D finite element model,and the influences of process layouts and technological parameters on the castrolling force were analyzed.Through the indirect multi-field coupled analysis method,the temperature–pressure evolution and reasonable process window can be predicted,which provides a significant basis for guiding equipment design and improving product quality.
基金the financial support from the National Natural Science Foundation of China (No. 51974278)the Natural Science Foundation of Hebei Province Distinguished Young Fund Project, China (No. E2018203446)the National Foundation of Key Research and Development Project of China (No. 2018YFA0707303)
文摘The mechanical properties and product thickness specifications of bimetallic clad strip prepared by twin-roll casting are tightly related to the mechanical behavior of bonding interface interaction.The thermal−flow coupled simulation and the interface pressure calculation models are established with the cast-rolling velocity as the variable.The results show that the interface temperature decreases,the interface pressure and the proportion of the thickness of the Al side increase with the decrease in cast-rolling velocity.The thinning of Cu strip mainly occurs in the backward slip zone.The higher pressure and longer solid/semi-solid contact time make the interface bonded fully,which provides favorable conditions for atomic diffusion.The inter-diffusion zone with a width of 4.9μm is attained at a cast-rolling velocity of 2.4 m/min,and the Cu side surface is nearly completely covered by aluminum.Therefore,the ductile fracture occurs on the Al side,which prevents the propagation of interface delamination cracks effectively.Meanwhile,shear effect becomes more significant at high interfacial pressure and large plastic strain,and the microstructure on Al side is composed of slender columnar crystals.Thus,the metallurgical bonding and refinement of grains on the Al side can result in higher bonding strength and tensile properties of the clad strip.