The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star ...The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star formation at z> 1.In this paper,we study the lifetimes of X-ray active galactic nuclei(AGNs) in UV-selected red sequence(RS),blue cloud(BC) and green valley(GV) galaxies,finding that AGN accretion activities are most prominent in GV galaxies at z ~1.5-2,compared with RS and BC galaxies.We also compare AGN accretion timescales with typical color transition timescales of UV-selected galaxies.We find that the lifetime of GV galaxies at z~1.5-2 is very close to the typical timescale when the AGNs residing in them stay in the high-accretion-rate mode at these redshifts;for BC galaxies,the consistency between the color transition timescale and the black hole strong accretion lifetime is more likely to happen at lower redshifts(z <1).Our results support the scenario where AGN accretion activities govern UV color transitions of host galaxies,making galaxies and their central SMBHs coevolve with each other.展开更多
We present a stellar population synthesis study of a type II luminous infrared galaxy, IRAS F21013-0739. Optical images show clear characteristics of a merger remnant. The H-band absolute magnitude is MH = -25.1, whic...We present a stellar population synthesis study of a type II luminous infrared galaxy, IRAS F21013-0739. Optical images show clear characteristics of a merger remnant. The H-band absolute magnitude is MH = -25.1, which is -2 times as luminous as L* galaxies. Stellar populations are obtained through the stellar synthesis code STARLIGHT. We find that it experienced a recent starburst (SB) phase - 100 Myr ago. By reconstructing the ultraviolet-to-optical spectrum, and adopting Calzetti et al. and Leitherer et al.'s extinction curves, we estimate the past infrared (IR) luminosities of the host galaxy and find it may have experienced an ultraluminous infrared galaxy phase which lasted for about 100 Myr. Its i-band absolute magnitude is Mi = -22.463, and its spectral type shows type 2 active galactic nucleus (AGN) characteristics. The mass of the supermassive black-hole is estimated to be MBH = 1.6 × 107 M⊙ (lower- limit). The Eddington ratio Lbol/LEdd is 0.15, which is typical of Palomar-Green (PG) quasars. Both the nuclear SB and AGN contribute to the present IR luminosity budget, and the SB contributes -67%. On the diagram of IR color versus IR/opfical excess, it is located between IR quasars and PG quasars. These results indicate that IRAS F21013-0739 has probably evolved from a ULIRG, and it can possibly evolve into an AGN.展开更多
Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a...Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a function of intensity of light within the central 1.5 and 3 arcsec region,is found to be a vital parameter in galaxy evolution,as it shares strong correlations with many structural and dynamical properties of early-type galaxies,including mass of the central supermassive black hole(SMBH).We use archival HST images for aperture photometry at the centre of the galaxy image to compute the CIR.We observe that the relative sizes of nuclear rings and ring cluster surface densities strongly correlate with the CIR.These correlations suggest reduced star formation in the centres of galaxies hosting small and dense nuclear rings.This scenario appears to be a consequence of strong bars as advocated by the significant connection observed between the CIR and bar strengths.In addition,we observe that the CIR is closely related with the integrated properties of the stellar population in the nuclear rings,associating the rings hosting older and less massive star clusters with low values of CIR.Thus,the CIR can serve as a crucial parameter in unfolding the coupled evolution of bars and rings as it is intimately connected with both their properties.展开更多
This paper modifies the Farnes’ unifying theory of dark energy and dark matter which are negative-mass, created continuously from the negative-mass universe in the positive-negative mass universe pair. The first modi...This paper modifies the Farnes’ unifying theory of dark energy and dark matter which are negative-mass, created continuously from the negative-mass universe in the positive-negative mass universe pair. The first modification explains that observed dark energy is 68.6%, greater than 50% for the symmetrical positive-negative mass universe pair. This paper starts with the proposed positive-negative-mass 11D universe pair (without kinetic energy) which is transformed into the positive-negative mass 10D universe pair and the external dual gravities as in the Randall-Sundrum model, resulting in the four equal and separate universes consisting of the positive-mass 10D universe, the positive-mass massive external gravity, the negative-mass 10D universe and the negative-mass massive external gravity. The positive-mass 10D universe is transformed into 4D universe (home universe) with kinetic energy through the inflation and the Big Bang to create positive-mass dark matter which is five times of positive-mass baryonic matter. The other three universes without kinetic energy oscillate between 10D and 10D through 4D, resulting in the hidden universes when D > 4 and dark energy when D = 4, which is created continuously to our 4D home universe with the maximum dark energy = 3/4 = 75%. In the second modification to explain dark matter in the CMB, dark matter initially is not repulsive. The condensed baryonic gas at the critical surface density induces dark matter repulsive force to transform dark matter in the region into repulsive dark matter repulsing one another. The calculated percentages of dark energy, dark matter, and baryonic matter are 68.6 (as an input from the observation), 26 and 5.2, respectively, in agreement with observed 68.6, 26.5 and 4.9, respectively, and dark energy started in 4.33 billion years ago in agreement with the observed 4.71 <span style="white-space:nowrap;">±</span> 0.98 billion years ago. In conclusion, the modified Farnes’ unifying theory reinterprets the Farnes’ equations, and is a unifying theory of dark energy, dark matter, and baryonic matter in the positive-negative mass universe pair. The unifying theory explains protogalaxy and galaxy evolutions in agreement with the observations.展开更多
We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in ...We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in a magnitude-limited sample at R≤23,for which the statistical properties of the sample are well understood.We divide emission-line galaxies into star-forming galaxies,Low Ionization Nuclear Emission line Regions(LINERs) ,and Seyferts by using emission-line ratios of[OII],Hβ,and[OIII],and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies.For absorption-line galaxies,we recover the well-known result that these galaxies have had no detectable evolution since z~0.6-0.7,but we also find that in the range z=0.65-1,at least 50% of the stars in bright absorption systems are younger than 2.5 Gyr.Faint absorption-line galaxies in the cluster at z=0.29 also had significant star formation during the previous 2-3 Gyr,but their brighter counterparts seem to be only composed of old stars.At z~0.8,our dynamically young cluster had a truncated red-sequence.This result seems to be consistent with a scenario where the final assembly of E/S0 took place at z1.In the volume-limited range 0.35≤z≤0.65,we find that 23% of the early-type galaxies have LINER-like spectra with Hβin absorption and have a significant component of A stars.The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGNs,but to the population of‘retired galaxies’recently identified by Cid Fernandes et al.in the Sloan Digital Sky Survey(SDSS) .Early-type LINERs with various fractions of A stars and E+A galaxies appear to play an important role in the formation of the red sequence.展开更多
Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granu...Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.展开更多
Based on the undisturbed, finite thickness disk gravitational potential, we carried out 3-D Monte Carlo simulations of normal pulsars. We find that their scale height evolves in a similar way for different velocity di...Based on the undisturbed, finite thickness disk gravitational potential, we carried out 3-D Monte Carlo simulations of normal pulsars. We find that their scale height evolves in a similar way for different velocity dispersions (δv): it first increases linearly with time, reaches a peak, then gradually decreases, and finally approaches a stable asymptotic value. The initial velocity dispersion has a very large influence on the scale height. The time evolution of the scale height is studied. When the magnetic decay age is used as the time variable, the observed scale height has a similar trend as the simulated results in the linear stage, from which we derive velocity dispersions in the range 70 - 178km s^-1, which are near the statistical result of 90 - 270km s^-1 for 92 pulsars with known transverse velocities. If the characteristic age is used as the time variable, then the observed and theoretical curves roughly agree for t 〉 10^8 yr only if av 〈 25km s^-1.展开更多
As a major interstellar medium,the atomic neutral hydrogen(H_(I))plays an important role in the galaxy evolution.It provides the ingredient for star formation,and sensitively traces the internal processes and external...As a major interstellar medium,the atomic neutral hydrogen(H_(I))plays an important role in the galaxy evolution.It provides the ingredient for star formation,and sensitively traces the internal processes and external perturbations influencing the galaxy.With the beginning of many new radio telescopes and surveys,H_(I)may make a more significant contribution to the understanding of galaxies in the near future.This review discusses the major development of the 21 cm emission-line H_(I)observations and studies in the past few years,including its scaling relations with other galaxy properties,its kinematics and structures,its role in environmental studies,and its constraints on hydrodynamical simulations.The local-Universe H_(I)scaling relations of stellar-massselected samples extend smoothly to 10^(9)M⊙stellar mass,with a tentative evolution to the redshift of∼0.1.The development of measurement techniques enables better estimations of H_(I)non-circular motion,dispersion,and thickness,and new observations revealed extended or extra-planar H_(I)structures,both helpfully constraining the gas accretion,stellar feedback,and star formation processes of galaxy evolution models.H_(I)is very useful for tracing the satellite evolution in dense environments,the studies of which would benefit from ongoing blind H_(I)surveys.Though simulations still cannot fully reproduce H_(I)gas properties,they help to understand the role of possible factors in regulating H_(I)properties.展开更多
Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Ha), EW(HfiA) and...Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Ha), EW(HfiA) and D,(4000)) on the NUV-r color-mass and SFR-M, diagrams. The distributions of EW(Ha) and Dn(4000) on the NUV-r color-mass diagram show clear trends that at a given stellar mass, galaxies with redder NUV-r colors have smaller EW(Ha) and larger Dn (4000). The reddest adv-merger (U)LIRGs close to the green valley mostly have Dn(4000)〉 1.4. In addition, in the SFR-M, diagram, as the SFR decreases, the EW(Ha) decreases and the Dn (4000) increases, implying that the adv-merger (U)LIRGs on the star formation main sequence have more evolved stellar populations than those above the main sequence. These results indicate that a fraction of the adv-merger (U)LIRGs have already exhibited signs of fading from the starburst phase and that the NUV-r reddest adv-merger (U)LIRGs are likely at the initial stage of post-starbursts with an age of - 1 Gyr, which is consistent with the gas exhaustion time-scales. Therefore, our results offer additional support for the fast evolutionary track from the blue cloud to the red sequence.展开更多
Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk...Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7–8 Gyr.The transition between the two phases occurs around a lookback time between 8 and11 Gyr. The two phases may be responsible for the formation of the Milky Way's thick and thin disks, respectively. Also, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish stars from the thin and thick disks. From an epoch earlier than 11 Gyr to one between 8 and 11 Gyr, there is an abrupt, significant change in magnitude of both the radial and vertical metallicity gradients, suggesting that stellar radial migration is unlikely to play an important role in the formation of the thick disk.展开更多
In order to improve the thermostability of β- 1,3-1,4-glucanase, evolutionary molecular engineering was used to evolve the β-1,3-1,4-glucanase from Bacillus subtilis ZJF-1A5. The process involves random mutation by ...In order to improve the thermostability of β- 1,3-1,4-glucanase, evolutionary molecular engineering was used to evolve the β-1,3-1,4-glucanase from Bacillus subtilis ZJF-1A5. The process involves random mutation by error-prone PCR and DNA shuffling followed by screening on the filter-based assay. Two mutants, EGsl and EGs2, were found to have four and five amino acid substitutions, respectively. These substitutions resulted in an increase in melting temperature from Tm=62.5℃ for the wild-type enzyme to Tm=65.5℃ for the mutant EGsl and 67.5℃ for the mutant EGs2. However, the two mutated enzymes had opposite approaches to produce reducing sugar from lichenin with either much higher (28%) for the former or much lower (21.6%) for the latter in comparison with their parental enzymes. The results demonstrate that directed evolution is an effective approach to improve the thermostability of a mesophilic enzyme.展开更多
We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes(SMBHs) with their host galaxies.Although the coalescence of SMBHs is not important,the quasarmode accretion induced b...We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes(SMBHs) with their host galaxies.Although the coalescence of SMBHs is not important,the quasarmode accretion induced by mergers plays a dominant role in the growth of SMBHs.Mergers play a more important role in the growth of SMBH host galaxies than in the SMBH growth.It is the combined contribution from quasar mode accretion and mergers to the SMBH growth and the combined contribution from starburst and mergers to their host galaxy growth that determine the observed scaling relation between the SMBH masses and their host galaxy masses.We also find that mergers are more important in the growth of SMBH host galaxies compared to normal galaxies which share the same stellar mass range as the SMBH host galaxies.展开更多
In the past,people did not realize the formation and structure of galaxies.They even mistook the black holes hidden in the center of a galaxy as independent celestial objects,making black holes mysterious and unbeliev...In the past,people did not realize the formation and structure of galaxies.They even mistook the black holes hidden in the center of a galaxy as independent celestial objects,making black holes mysterious and unbelievable.It was only after the author studied and discovered the laws of the formation and evolution of satellites,planets and stars that he put forward the scientific theory of galaxy formation and evolution,therefore revealing the hierarchical structure of galaxy and the existence and characteristics of black holes as the main nodes of galactic structure.展开更多
Under the water resources perspective,coupling coordination of economy-ecology-society system in Xinjiang was taken as the research object. By building the coupling evaluation index system of the water resources-econo...Under the water resources perspective,coupling coordination of economy-ecology-society system in Xinjiang was taken as the research object. By building the coupling evaluation index system of the water resources-economy-ecology-society system,quantitative evaluation and analysis of the coupling coordination of the water resources-economy-ecology-society system from 2001 to 2014 were conducted. The results showed that benefit indexes of economic system and social system grew rapidly,while benefit indexes of water resources system and ecosystem fluctuated smoothly from 2001 to 2014; coupling state of the whole system was at rival stage,and coupling coordination was reluctant coordination type,and the coupling index was slightly higher than the coupling coordination index. Moreover,it showed that the more the coupling systems,the lower indices of coupling and the coupling coordination.展开更多
Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from ...Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation.展开更多
In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-hi...In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.展开更多
The fabrication of S-scheme heterojunctions with fast charge transfer and good interface contacts,such as intermolecularπ–πinteractions,is a promising approach to improve photocatalytic performance.A unique two-dim...The fabrication of S-scheme heterojunctions with fast charge transfer and good interface contacts,such as intermolecularπ–πinteractions,is a promising approach to improve photocatalytic performance.A unique two-dimensional/two-dimensional(2D/2D)S-scheme heterojunction containing TpPa-1-COF/g-C_(3)N_(4) nanosheets(denoted as TPCNNS)was developed.The established maximum interfacial interaction between TpPa-1-COF NS and g-C_(3)N_(4) NS may result in aπ–πconjugated heterointerface.Furthermore,the difference in the work functions of TpPa-1-COF and g-C_(3)N_(4) results in a large Fermi level gap,leading to upward/downward band edge bending.The spontaneous interfacial charge transfer from g-C_(3)N_(4) to TpPa-1-COF at theπ–πconjugated interface area results in the presence of a built-in electric field,according to the charge density difference analysis based on density functional theory calculations.Such an enhanced built-in electric field can efficiently drive directional charge migration via the S-scheme mechanism,which enhances charge separation and utilization.Thus,an approximately 2.8 and 5.6 times increase in the photocatalytic hydrogen evolution rate was recorded in TPCNNS-2(1153μmol g^(-1) h^(-1))compared to pristine TpPa-1-COF and g-C_(3)N_(4) NS,respectively,under visible light irradiation.Overall,this work opens new avenues in the fabrication of 2D/2Dπ–πconjugated S-scheme heterojunction photocatalysts with highly efficient hydrogen evolution performance.展开更多
A long-lived sunspot group (AR9604) on the south hemisphere that lasted five solar rotations and produced some strong bursts is analyzed. The focus is on its evolving features. Its whole life was successfully maintain...A long-lived sunspot group (AR9604) on the south hemisphere that lasted five solar rotations and produced some strong bursts is analyzed. The focus is on its evolving features. Its whole life was successfully maintained by four Emerging Flux Regions (EFRs). Apart from the one that lasted only a short time and did not produce any bursts, the other three EFRs have the following common features: (1) A positive writhe of magnetic flux tubes and a twist of the field lines of the same sign, indicating kink instability. (2) A clockwise rotation and a high tilt because the writhe was right-handed. (3) A compact 'island δ' structure of the sunspot group indicating concentrated kink instability. Since magnetic reconnection easily occurs at the kinked point of a very kink-unstable flux tube, these features should be the inducement of the strong bursts.展开更多
In Part 1 of this work, we showed that our new model of cosmology can account for the origin of all cosmic structures ranging in size from stars up to superclusters. In this model, at the time of nucleosynthesis, an i...In Part 1 of this work, we showed that our new model of cosmology can account for the origin of all cosmic structures ranging in size from stars up to superclusters. In this model, at the time of nucleosynthesis, an imprint embedded in the vacuum regulated the creation of the protons (and electrons) that later made up the structures. Immediately after nucleosynthesis and for a considerable period afterward, the evolution was completely determined by the expansion of the universe. Gradually, however, gravitational influences became more important until finally, the expansion of the structures-to-be ceased at their zero velocity points. Stars, galaxies, and galaxy clusters all reached their zero velocity points more or less simultaneously at the usually accepted time of the beginning of galaxy formation. From that point onward, the evolution gravitation came to dominate the evolution although the expansion still exerted its influence. In this paper, we examine the subsequent cluster evolution in some detail. We establish the conditions required to prevent a free-fall collapse of the clusters and then show that galaxies with quasar-like active nuclei located within the cluster were the sources of the necessary radiation. We also show that the required galactic supermassive black holes were a consequence of the initial free-fall collapse of all galaxies.展开更多
Based on a sample of 72 Blue Compact Galaxies (BCGs) observed with the 2.16 m telescope of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and about 4000 strong emission line galaxies f...Based on a sample of 72 Blue Compact Galaxies (BCGs) observed with the 2.16 m telescope of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and about 4000 strong emission line galaxies from the Sloan Digital Sky Survey, we analyzed their chemical evolution history using the revised chemical evolution model of Larsen et al. Our sample covers a much larger metallicity range (7.2 〈 12 + log(O/H) 〈 9.0). We found that, in order to reproduce the observed abundance pattern and gas fraction over the whole metallicity range, a relatively continuous star formation history is needed for high metallicity galaxies, while assuming a series of instantaneous bursts with long quiescent periods (some Gyrs) for low metallicity galaxies. Model calculations also show that only the closed-box model is capable of reproducing the observational data over the whole metallicity range. Models that consider the ordinary winds and/or inflow can only fit the observations in the low metallicity range, and a model with enriched wind cannot fit the data in the whole metallicity range. This implies that the current adopted simple wind and inflow models are not applicable to massive galaxies, where the underlying physics of galactic winds or inflow could be more complicated.展开更多
基金support from the National Natural Science Foundation of China (grant Nos. 12025303, 11890693,11421303 and 12003031)the CAS Frontier Science Key Research Program (QYZDJ-SSW-SLH006)+2 种基金the K.C. Wong Education Foundationthe science research grants from the China Manned Space Project with No. CMS-CSST-2021-A06support from the Chinese Academy of Sciences President’s International Fellowship Initiative (grant No. 2019PM0020)。
文摘The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star formation at z> 1.In this paper,we study the lifetimes of X-ray active galactic nuclei(AGNs) in UV-selected red sequence(RS),blue cloud(BC) and green valley(GV) galaxies,finding that AGN accretion activities are most prominent in GV galaxies at z ~1.5-2,compared with RS and BC galaxies.We also compare AGN accretion timescales with typical color transition timescales of UV-selected galaxies.We find that the lifetime of GV galaxies at z~1.5-2 is very close to the typical timescale when the AGNs residing in them stay in the high-accretion-rate mode at these redshifts;for BC galaxies,the consistency between the color transition timescale and the black hole strong accretion lifetime is more likely to happen at lower redshifts(z <1).Our results support the scenario where AGN accretion activities govern UV color transitions of host galaxies,making galaxies and their central SMBHs coevolve with each other.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10833006, 10773014, and 10978014)the Ministry of Science and Technology National Basic Science program (973 Program, Grant No. 2007CB815406)
文摘We present a stellar population synthesis study of a type II luminous infrared galaxy, IRAS F21013-0739. Optical images show clear characteristics of a merger remnant. The H-band absolute magnitude is MH = -25.1, which is -2 times as luminous as L* galaxies. Stellar populations are obtained through the stellar synthesis code STARLIGHT. We find that it experienced a recent starburst (SB) phase - 100 Myr ago. By reconstructing the ultraviolet-to-optical spectrum, and adopting Calzetti et al. and Leitherer et al.'s extinction curves, we estimate the past infrared (IR) luminosities of the host galaxy and find it may have experienced an ultraluminous infrared galaxy phase which lasted for about 100 Myr. Its i-band absolute magnitude is Mi = -22.463, and its spectral type shows type 2 active galactic nucleus (AGN) characteristics. The mass of the supermassive black-hole is estimated to be MBH = 1.6 × 107 M⊙ (lower- limit). The Eddington ratio Lbol/LEdd is 0.15, which is typical of Palomar-Green (PG) quasars. Both the nuclear SB and AGN contribute to the present IR luminosity budget, and the SB contributes -67%. On the diagram of IR color versus IR/opfical excess, it is located between IR quasars and PG quasars. These results indicate that IRAS F21013-0739 has probably evolved from a ULIRG, and it can possibly evolve into an AGN.
基金the financial support from Kerala State Council for Science,Technology and Environment(KSCSTE)
文摘Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a function of intensity of light within the central 1.5 and 3 arcsec region,is found to be a vital parameter in galaxy evolution,as it shares strong correlations with many structural and dynamical properties of early-type galaxies,including mass of the central supermassive black hole(SMBH).We use archival HST images for aperture photometry at the centre of the galaxy image to compute the CIR.We observe that the relative sizes of nuclear rings and ring cluster surface densities strongly correlate with the CIR.These correlations suggest reduced star formation in the centres of galaxies hosting small and dense nuclear rings.This scenario appears to be a consequence of strong bars as advocated by the significant connection observed between the CIR and bar strengths.In addition,we observe that the CIR is closely related with the integrated properties of the stellar population in the nuclear rings,associating the rings hosting older and less massive star clusters with low values of CIR.Thus,the CIR can serve as a crucial parameter in unfolding the coupled evolution of bars and rings as it is intimately connected with both their properties.
文摘This paper modifies the Farnes’ unifying theory of dark energy and dark matter which are negative-mass, created continuously from the negative-mass universe in the positive-negative mass universe pair. The first modification explains that observed dark energy is 68.6%, greater than 50% for the symmetrical positive-negative mass universe pair. This paper starts with the proposed positive-negative-mass 11D universe pair (without kinetic energy) which is transformed into the positive-negative mass 10D universe pair and the external dual gravities as in the Randall-Sundrum model, resulting in the four equal and separate universes consisting of the positive-mass 10D universe, the positive-mass massive external gravity, the negative-mass 10D universe and the negative-mass massive external gravity. The positive-mass 10D universe is transformed into 4D universe (home universe) with kinetic energy through the inflation and the Big Bang to create positive-mass dark matter which is five times of positive-mass baryonic matter. The other three universes without kinetic energy oscillate between 10D and 10D through 4D, resulting in the hidden universes when D > 4 and dark energy when D = 4, which is created continuously to our 4D home universe with the maximum dark energy = 3/4 = 75%. In the second modification to explain dark matter in the CMB, dark matter initially is not repulsive. The condensed baryonic gas at the critical surface density induces dark matter repulsive force to transform dark matter in the region into repulsive dark matter repulsing one another. The calculated percentages of dark energy, dark matter, and baryonic matter are 68.6 (as an input from the observation), 26 and 5.2, respectively, in agreement with observed 68.6, 26.5 and 4.9, respectively, and dark energy started in 4.33 billion years ago in agreement with the observed 4.71 <span style="white-space:nowrap;">±</span> 0.98 billion years ago. In conclusion, the modified Farnes’ unifying theory reinterprets the Farnes’ equations, and is a unifying theory of dark energy, dark matter, and baryonic matter in the positive-negative mass universe pair. The unifying theory explains protogalaxy and galaxy evolutions in agreement with the observations.
基金Supported by the National Natural Science Foundation of China(Grant Nos.10878010,10221001 and 10633040)the National Basic Research Program(973 program,No.2007CB815405)
文摘We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in a magnitude-limited sample at R≤23,for which the statistical properties of the sample are well understood.We divide emission-line galaxies into star-forming galaxies,Low Ionization Nuclear Emission line Regions(LINERs) ,and Seyferts by using emission-line ratios of[OII],Hβ,and[OIII],and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies.For absorption-line galaxies,we recover the well-known result that these galaxies have had no detectable evolution since z~0.6-0.7,but we also find that in the range z=0.65-1,at least 50% of the stars in bright absorption systems are younger than 2.5 Gyr.Faint absorption-line galaxies in the cluster at z=0.29 also had significant star formation during the previous 2-3 Gyr,but their brighter counterparts seem to be only composed of old stars.At z~0.8,our dynamically young cluster had a truncated red-sequence.This result seems to be consistent with a scenario where the final assembly of E/S0 took place at z1.In the volume-limited range 0.35≤z≤0.65,we find that 23% of the early-type galaxies have LINER-like spectra with Hβin absorption and have a significant component of A stars.The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGNs,but to the population of‘retired galaxies’recently identified by Cid Fernandes et al.in the Sloan Digital Sky Survey(SDSS) .Early-type LINERs with various fractions of A stars and E+A galaxies appear to play an important role in the formation of the red sequence.
基金Projects(51072045,51102074)supported by the National Natural Science Foundation of China
文摘Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.
基金Supported by the National Natural Science Foundation of China.
文摘Based on the undisturbed, finite thickness disk gravitational potential, we carried out 3-D Monte Carlo simulations of normal pulsars. We find that their scale height evolves in a similar way for different velocity dispersions (δv): it first increases linearly with time, reaches a peak, then gradually decreases, and finally approaches a stable asymptotic value. The initial velocity dispersion has a very large influence on the scale height. The time evolution of the scale height is studied. When the magnetic decay age is used as the time variable, the observed scale height has a similar trend as the simulated results in the linear stage, from which we derive velocity dispersions in the range 70 - 178km s^-1, which are near the statistical result of 90 - 270km s^-1 for 92 pulsars with known transverse velocities. If the characteristic age is used as the time variable, then the observed and theoretical curves roughly agree for t 〉 10^8 yr only if av 〈 25km s^-1.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602902)the National Natural Science Foundation of China(Grant Nos.12073002,12233001,and 8200906879)the China Manned Space Project。
文摘As a major interstellar medium,the atomic neutral hydrogen(H_(I))plays an important role in the galaxy evolution.It provides the ingredient for star formation,and sensitively traces the internal processes and external perturbations influencing the galaxy.With the beginning of many new radio telescopes and surveys,H_(I)may make a more significant contribution to the understanding of galaxies in the near future.This review discusses the major development of the 21 cm emission-line H_(I)observations and studies in the past few years,including its scaling relations with other galaxy properties,its kinematics and structures,its role in environmental studies,and its constraints on hydrodynamical simulations.The local-Universe H_(I)scaling relations of stellar-massselected samples extend smoothly to 10^(9)M⊙stellar mass,with a tentative evolution to the redshift of∼0.1.The development of measurement techniques enables better estimations of H_(I)non-circular motion,dispersion,and thickness,and new observations revealed extended or extra-planar H_(I)structures,both helpfully constraining the gas accretion,stellar feedback,and star formation processes of galaxy evolution models.H_(I)is very useful for tracing the satellite evolution in dense environments,the studies of which would benefit from ongoing blind H_(I)surveys.Though simulations still cannot fully reproduce H_(I)gas properties,they help to understand the role of possible factors in regulating H_(I)properties.
基金supported by the National Natural Science Foundation of China(Grant Nos11373027,10973011 and 11003015)sponsored by SRF for ROCS, SEM
文摘Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Ha), EW(HfiA) and D,(4000)) on the NUV-r color-mass and SFR-M, diagrams. The distributions of EW(Ha) and Dn(4000) on the NUV-r color-mass diagram show clear trends that at a given stellar mass, galaxies with redder NUV-r colors have smaller EW(Ha) and larger Dn (4000). The reddest adv-merger (U)LIRGs close to the green valley mostly have Dn(4000)〉 1.4. In addition, in the SFR-M, diagram, as the SFR decreases, the EW(Ha) decreases and the Dn (4000) increases, implying that the adv-merger (U)LIRGs on the star formation main sequence have more evolved stellar populations than those above the main sequence. These results indicate that a fraction of the adv-merger (U)LIRGs have already exhibited signs of fading from the starburst phase and that the NUV-r reddest adv-merger (U)LIRGs are likely at the initial stage of post-starbursts with an age of - 1 Gyr, which is consistent with the gas exhaustion time-scales. Therefore, our results offer additional support for the fast evolutionary track from the blue cloud to the red sequence.
基金supported by the National Key Basic Research Program of China (2014CB845700)supported by the National Natural Science Foundation of China (Grant No.11473001)B.Q.C acknowledges partial funding from the China Postdoctoral Science Foundation (2014M560843)
文摘Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7–8 Gyr.The transition between the two phases occurs around a lookback time between 8 and11 Gyr. The two phases may be responsible for the formation of the Milky Way's thick and thin disks, respectively. Also, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish stars from the thin and thick disks. From an epoch earlier than 11 Gyr to one between 8 and 11 Gyr, there is an abrupt, significant change in magnitude of both the radial and vertical metallicity gradients, suggesting that stellar radial migration is unlikely to play an important role in the formation of the thick disk.
基金Project supported by the National Natural Science Foundation of China (No. 20276064) and Natural Science Foundation of ZhejiangProvince (No. Z304076), China
文摘In order to improve the thermostability of β- 1,3-1,4-glucanase, evolutionary molecular engineering was used to evolve the β-1,3-1,4-glucanase from Bacillus subtilis ZJF-1A5. The process involves random mutation by error-prone PCR and DNA shuffling followed by screening on the filter-based assay. Two mutants, EGsl and EGs2, were found to have four and five amino acid substitutions, respectively. These substitutions resulted in an increase in melting temperature from Tm=62.5℃ for the wild-type enzyme to Tm=65.5℃ for the mutant EGsl and 67.5℃ for the mutant EGs2. However, the two mutated enzymes had opposite approaches to produce reducing sugar from lichenin with either much higher (28%) for the former or much lower (21.6%) for the latter in comparison with their parental enzymes. The results demonstrate that directed evolution is an effective approach to improve the thermostability of a mesophilic enzyme.
基金supported by NSFC grants (Nos.11573033,11622325,11425312 and 11988101)supported by NSFC grant (No.11803045)+2 种基金the “Recruitment Program of Global Youth Experts” of China,the NAOC (Grant Y434011V01)supported by the National Key R&D Program of China (No.2017YFB0203300)the Key Program of NFSC (Grant 11733010)。
文摘We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes(SMBHs) with their host galaxies.Although the coalescence of SMBHs is not important,the quasarmode accretion induced by mergers plays a dominant role in the growth of SMBHs.Mergers play a more important role in the growth of SMBH host galaxies than in the SMBH growth.It is the combined contribution from quasar mode accretion and mergers to the SMBH growth and the combined contribution from starburst and mergers to their host galaxy growth that determine the observed scaling relation between the SMBH masses and their host galaxy masses.We also find that mergers are more important in the growth of SMBH host galaxies compared to normal galaxies which share the same stellar mass range as the SMBH host galaxies.
文摘In the past,people did not realize the formation and structure of galaxies.They even mistook the black holes hidden in the center of a galaxy as independent celestial objects,making black holes mysterious and unbelievable.It was only after the author studied and discovered the laws of the formation and evolution of satellites,planets and stars that he put forward the scientific theory of galaxy formation and evolution,therefore revealing the hierarchical structure of galaxy and the existence and characteristics of black holes as the main nodes of galactic structure.
基金Supported by"Effect Evaluation of Xinjiang Implementing the First Round of Subsidy Reward Mechanism Policy of Grassland Eco-protection" from Special Item of Xinjiang Animal Husbandry DepartmentPublic Welfare Scientific Research Project of Xinjiang Uygur Autonomous Region(XK201516)
文摘Under the water resources perspective,coupling coordination of economy-ecology-society system in Xinjiang was taken as the research object. By building the coupling evaluation index system of the water resources-economy-ecology-society system,quantitative evaluation and analysis of the coupling coordination of the water resources-economy-ecology-society system from 2001 to 2014 were conducted. The results showed that benefit indexes of economic system and social system grew rapidly,while benefit indexes of water resources system and ecosystem fluctuated smoothly from 2001 to 2014; coupling state of the whole system was at rival stage,and coupling coordination was reluctant coordination type,and the coupling index was slightly higher than the coupling coordination index. Moreover,it showed that the more the coupling systems,the lower indices of coupling and the coupling coordination.
基金supported by the National Natural Science Foundation of China(51572253,21771171)Scientific Research Grant of Hefei National Synchrotron Radiation Laboratory(UN2017LHJJ)+1 种基金the Fundamental Research Funds for the Central Universitiescooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)~~
文摘Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation.
基金This study was supported in part by National Natural Science Foundation of China
文摘In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.
文摘The fabrication of S-scheme heterojunctions with fast charge transfer and good interface contacts,such as intermolecularπ–πinteractions,is a promising approach to improve photocatalytic performance.A unique two-dimensional/two-dimensional(2D/2D)S-scheme heterojunction containing TpPa-1-COF/g-C_(3)N_(4) nanosheets(denoted as TPCNNS)was developed.The established maximum interfacial interaction between TpPa-1-COF NS and g-C_(3)N_(4) NS may result in aπ–πconjugated heterointerface.Furthermore,the difference in the work functions of TpPa-1-COF and g-C_(3)N_(4) results in a large Fermi level gap,leading to upward/downward band edge bending.The spontaneous interfacial charge transfer from g-C_(3)N_(4) to TpPa-1-COF at theπ–πconjugated interface area results in the presence of a built-in electric field,according to the charge density difference analysis based on density functional theory calculations.Such an enhanced built-in electric field can efficiently drive directional charge migration via the S-scheme mechanism,which enhances charge separation and utilization.Thus,an approximately 2.8 and 5.6 times increase in the photocatalytic hydrogen evolution rate was recorded in TPCNNS-2(1153μmol g^(-1) h^(-1))compared to pristine TpPa-1-COF and g-C_(3)N_(4) NS,respectively,under visible light irradiation.Overall,this work opens new avenues in the fabrication of 2D/2Dπ–πconjugated S-scheme heterojunction photocatalysts with highly efficient hydrogen evolution performance.
文摘A long-lived sunspot group (AR9604) on the south hemisphere that lasted five solar rotations and produced some strong bursts is analyzed. The focus is on its evolving features. Its whole life was successfully maintained by four Emerging Flux Regions (EFRs). Apart from the one that lasted only a short time and did not produce any bursts, the other three EFRs have the following common features: (1) A positive writhe of magnetic flux tubes and a twist of the field lines of the same sign, indicating kink instability. (2) A clockwise rotation and a high tilt because the writhe was right-handed. (3) A compact 'island δ' structure of the sunspot group indicating concentrated kink instability. Since magnetic reconnection easily occurs at the kinked point of a very kink-unstable flux tube, these features should be the inducement of the strong bursts.
文摘In Part 1 of this work, we showed that our new model of cosmology can account for the origin of all cosmic structures ranging in size from stars up to superclusters. In this model, at the time of nucleosynthesis, an imprint embedded in the vacuum regulated the creation of the protons (and electrons) that later made up the structures. Immediately after nucleosynthesis and for a considerable period afterward, the evolution was completely determined by the expansion of the universe. Gradually, however, gravitational influences became more important until finally, the expansion of the structures-to-be ceased at their zero velocity points. Stars, galaxies, and galaxy clusters all reached their zero velocity points more or less simultaneously at the usually accepted time of the beginning of galaxy formation. From that point onward, the evolution gravitation came to dominate the evolution although the expansion still exerted its influence. In this paper, we examine the subsequent cluster evolution in some detail. We establish the conditions required to prevent a free-fall collapse of the clusters and then show that galaxies with quasar-like active nuclei located within the cluster were the sources of the necessary radiation. We also show that the required galactic supermassive black holes were a consequence of the initial free-fall collapse of all galaxies.
基金Supported by the National Natural Science Foundation of China.
文摘Based on a sample of 72 Blue Compact Galaxies (BCGs) observed with the 2.16 m telescope of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and about 4000 strong emission line galaxies from the Sloan Digital Sky Survey, we analyzed their chemical evolution history using the revised chemical evolution model of Larsen et al. Our sample covers a much larger metallicity range (7.2 〈 12 + log(O/H) 〈 9.0). We found that, in order to reproduce the observed abundance pattern and gas fraction over the whole metallicity range, a relatively continuous star formation history is needed for high metallicity galaxies, while assuming a series of instantaneous bursts with long quiescent periods (some Gyrs) for low metallicity galaxies. Model calculations also show that only the closed-box model is capable of reproducing the observational data over the whole metallicity range. Models that consider the ordinary winds and/or inflow can only fit the observations in the low metallicity range, and a model with enriched wind cannot fit the data in the whole metallicity range. This implies that the current adopted simple wind and inflow models are not applicable to massive galaxies, where the underlying physics of galactic winds or inflow could be more complicated.