期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Online Adaptation of Game AI with Evolutionary Learning
1
作者 方寿海 季国红 蔡瑞英 《Journal of Donghua University(English Edition)》 EI CAS 2007年第2期264-267,共4页
Since the beginning of computer games era, artificial intelligence (AI) has been a standard feature of games. The current emphasis in computer game AI is improving the quality of opponent AI. Our research question rea... Since the beginning of computer games era, artificial intelligence (AI) has been a standard feature of games. The current emphasis in computer game AI is improving the quality of opponent AI. Our research question reads: How can unsupervised online learning be incorporated in Computer Role Playing Game(CRPG) to improve the strategy of the opponent AI? Our goal is to use online evolutionary learning to design strategies that can defeat the opponent. So we apply a novel technique called dynamic scripting that realizes online adaptation of scripted opponent AI and report on experiments performed in a simulated CRPG to assess the adaptive performance obtained with the technique. 展开更多
关键词 artificial intelligence evolutionary learning dynamic scripting game AI
下载PDF
A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images
2
作者 Fatemeh Sadeghi Omid Rostami +1 位作者 Myung-Kyu Yi Seong Oun Hwang 《Computers, Materials & Continua》 SCIE EI 2023年第1期751-768,共18页
Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now.In the meantime,airspace opacities spreads related to lung... Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now.In the meantime,airspace opacities spreads related to lung have been of the most challenging problems in this area.A common approach to do on that score has been using chest X-ray images to better diagnose positive Covid-19 cases.Similar to most other classification problems,machine learning-based approaches have been the first/most-used candidates in this application.Many schemes based on machine/deep learning have been proposed in recent years though increasing the performance and accuracy of the system has still remained an open issue.In this paper,we develop a novel deep learning architecture to better classify the Covid-19 X-ray images.To do so,we first propose a novel multi-habitat migration artificial bee colony(MHMABC)algorithm to improve the exploitation/exploration of artificial bee colony(ABC)algorithm.After that,we optimally train the fully connected by using the proposed MHMABC algorithm to obtain better accuracy and convergence rate while reducing the execution cost.Our experiment results on Covid-19 X-ray image dataset show that the proposed deep architecture has a great performance in different important optimization parameters.Furthermore,it will be shown that the MHMABC algorithm outperforms the state-of-the-art algorithms by evaluating its performance using some wellknown benchmark datasets. 展开更多
关键词 ChestX-ray image processing evolutionary deep learning covid-19
下载PDF
A Novel Attack on Complex APUFs Using the Evolutionary Deep Convolutional Neural Network
3
作者 Ali Ahmadi Shahrakht Parisa Hajirahimi +1 位作者 Omid Rostami Diego Martín 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期3059-3081,共23页
As the internet of things(IoT)continues to expand rapidly,the significance of its security concerns has grown in recent years.To address these concerns,physical unclonable functions(PUFs)have emerged as valuable tools... As the internet of things(IoT)continues to expand rapidly,the significance of its security concerns has grown in recent years.To address these concerns,physical unclonable functions(PUFs)have emerged as valuable tools for enhancing IoT security.PUFs leverage the inherent randomness found in the embedded hardware of IoT devices.However,it has been shown that some PUFs can be modeled by attackers using machine-learning-based approaches.In this paper,a new deep learning(DL)-based modeling attack is introduced to break the resistance of complex XAPUFs.Because training DL models is a problem that falls under the category of NP-hard problems,there has been a significant increase in the use of meta-heuristics(MH)to optimize DL parameters.Nevertheless,it is widely recognized that finding the right balance between exploration and exploitation when dealing with complex problems can pose a significant challenge.To address these chal-lenges,a novel migration-based multi-parent genetic algorithm(MBMPGA)is developed to train the deep convolutional neural network(DCNN)in order to achieve a higher rate of accuracy and convergence speed while decreas-ing the run-time of the attack.In the proposed MBMPGA,a non-linear migration model of the biogeography-based optimization(BBO)is utilized to enhance the exploitation ability of GA.A new multi-parent crossover is then introduced to enhance the exploration ability of GA.The behavior of the proposed MBMPGA is examined on two real-world optimization problems.In benchmark problems,MBMPGA outperforms other MH algorithms in convergence rate.The proposed model are also compared with previous attacking models on several simulated challenge-response pairs(CRPs).The simulation results on the XAPUF datasets show that the introduced attack in this paper obtains more than 99%modeling accuracy even on 8-XAPUF.In addition,the proposed MBMPGA-DCNN outperforms the state-of-the-art modeling attacks in a reduced timeframe and with a smaller number of required sets of CRPs.The area under the curve(AUC)of MBMPGA-DCNN outperforms other architectures.MBMPGA-DCNN achieved sensitivities,specificities,and accuracies of 99.12%,95.14%,and 98.21%,respectively,in the test datasets,establishing it as the most successful method. 展开更多
关键词 IoT security PUFs modeling attacks evolutionary deep learning migration-based multi-parent genetic algorithm
下载PDF
User Purchase Intention Prediction Based on Improved Deep Forest
4
作者 Yifan Zhang Qiancheng Yu Lisi Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期661-677,共17页
Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection.To address this issue,based... Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection.To address this issue,based on the deep forest algorithm and further integrating evolutionary ensemble learning methods,this paper proposes a novel Deep Adaptive Evolutionary Ensemble(DAEE)model.This model introduces model diversity into the cascade layer,allowing it to adaptively adjust its structure to accommodate complex and evolving purchasing behavior patterns.Moreover,this paper optimizes the methods of obtaining feature vectors,enhancement vectors,and prediction results within the deep forest algorithm to enhance the model’s predictive accuracy.Results demonstrate that the improved deep forest model not only possesses higher robustness but also shows an increase of 5.02%in AUC value compared to the baseline model.Furthermore,its training runtime speed is 6 times faster than that of deep models,and compared to other improved models,its accuracy has been enhanced by 0.9%. 展开更多
关键词 Purchase prediction deep forest differential evolution algorithm evolutionary ensemble learning model selection
下载PDF
Stock Prediction Based on Technical Indicators Using Deep Learning Model
5
作者 Manish Agrawal Piyush Kumar Shukla +2 位作者 Rajit Nair Anand Nayyar Mehedi Masud 《Computers, Materials & Continua》 SCIE EI 2022年第1期287-304,共18页
Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to... Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to each other.Several traditional Stock Technical Indicators(STIs)may incorrectly predict the stockmarket trends.To study the stock market characteristics using STIs and make efficient trading decisions,a robust model is built.This paper aims to build up an Evolutionary Deep Learning Model(EDLM)to identify stock trends’prices by using STIs.The proposed model has implemented the Deep Learning(DL)model to establish the concept of Correlation-Tensor.The analysis of the dataset of three most popular banking organizations obtained from the live stock market based on the National Stock exchange(NSE)-India,a Long Short Term Memory(LSTM)is used.The datasets encompassed the trading days from the 17^(th) of Nov 2008 to the 15^(th) of Nov 2018.This work also conducted exhaustive experiments to study the correlation of various STIs with stock price trends.The model built with an EDLM has shown significant improvements over two benchmark ML models and a deep learning one.The proposed model aids investors in making profitable investment decisions as it presents trend-based forecasting and has achieved a prediction accuracy of 63.59%,56.25%,and 57.95%on the datasets of HDFC,Yes Bank,and SBI,respectively.Results indicate that the proposed EDLA with a combination of STIs can often provide improved results than the other state-of-the-art algorithms. 展开更多
关键词 Long short term memory evolutionary deep learning model national stock exchange stock technical indicators predictive modelling prediction accuracy
下载PDF
Design of Evolvable Hardware for Robotic Navigation
6
作者 Yong Liu 1,Tetsuya Higuchi 2,Masaya lwata 2 1.The University of Aizu, Fukushima 965 8580,Japan 2.Evolvable Systems Laboratory, Electrotechnical Laboratory, Lbaraki 305 8568,Japan 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期547-554,共8页
This paper presents an integrated on line learning system to evolve programmable logic array (PLA) controllers for navigating an autonomous robot in a two dimensional environment. The integrated on line learning sy... This paper presents an integrated on line learning system to evolve programmable logic array (PLA) controllers for navigating an autonomous robot in a two dimensional environment. The integrated on line learning system consists of two learning modules: one is the module of reinforcement learning based on temporal difference learning based on genetic algorithms, and the other is the module of evolutionary learning based on genetic algorithms. The control rules extracted from the module of reinforcement learning can be used as input to the module of evolutionary learning, and quickly implemented by the PLA through on line evolution. The on line evolution has shown promise as a method of learning systems in complex environment. The evolved PLA controllers can successfully navigate the robot to a target in the two dimensional environment while avoiding collisions with randomly positioned obstacles. 展开更多
关键词 evolvable hardware robotic navigation reinforcement learning evolutionary learning reconfigurable hardware device
下载PDF
Dynamic Scheduling Algorithm Based on Evolutionary Reinforcement Learning for Sudden Contaminant Events Under Uncertain Environment
7
作者 Chengyu Hu Rui Qiao +2 位作者 Zhe Zhang Xuesong Yan Ming Li 《Complex System Modeling and Simulation》 2022年第3期213-223,共11页
For sudden drinking water pollution event,reasonable opening or closing valves and hydrants in a water distribution network(WDN),which ensures the isolation and discharge of contaminant as soon as possible,is consider... For sudden drinking water pollution event,reasonable opening or closing valves and hydrants in a water distribution network(WDN),which ensures the isolation and discharge of contaminant as soon as possible,is considered as an effective emergency measure.In this paper,we propose an emergency scheduling algorithm based on evolutionary reinforcement learning(ERL),which can train a good scheduling policy by the combination of the evolutionary computation(EC)and reinforcement learning(RL).Then,the optimal scheduling policy can guide the operation of valves and hydrants in real time based on sensor information,and protect people from the risk of contaminated water.Experiments verify our algorithm can achieve good results and effectively reduce the impact of pollution events. 展开更多
关键词 evolutionary reinforcement learning water distribution network scheduling problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部