This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors a...This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method.展开更多
This study explored the factors influencing cooperative innovation in environmentally friendly agricultural biotechnology in China.First,we constructed an evolutionary game model comprising the factors of net income o...This study explored the factors influencing cooperative innovation in environmentally friendly agricultural biotechnology in China.First,we constructed an evolutionary game model comprising the factors of net income of cooperative innovation,net income of independent innovation,market constraints,and government subsidies.Using MATLAB simulation,we assigned different values to the aforementioned variables to explore the evolutionary trend of innovators’willingness to cooperate.Results showed that when the values of net income of cooperative innovation,net income of independent innovation,market constraints,and government subsidies exceeded the threshold,innovators’willingness to cooperate was significantly enhanced.Furthermore,the proportion of innovators who cooperated with others gradually increased to 100%;otherwise,it gradually decreased to 0%.Comparing the simulation curve with the real evolution curve of cooperative innovation in agricultural biotechnology in China,we found that the gradual decline in the willingness to cooperate could be due to insufficient subsidies for cooperative innovation,low income from cooperative innovation,weak profitability of innovators,and weak market constraints.展开更多
Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations.It still remains an open problem to fully understand evolutionary game ...Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations.It still remains an open problem to fully understand evolutionary game dynamics on networks except for certain limiting scenarios such as weak selection.Here we study the evolutionary dynamics of spatial games under strong selection where strategy evolution of individuals becomes deterministic in a fashion of winners taking all.We show that the long term behavior of the evolutionary process eventually converges to a particular basin of attraction,which is either a periodic cycle or a single fixed state depending on specific initial conditions and model parameters.In particular,we find that symmetric starting configurations can induce an exceedingly long transient phase encompassing a large number of aesthetic spatial patterns including the prominent kaleidoscopic cooperation.Our finding holds for any population structure and a broad class of finite games beyond the Prisoner’s Dilemma.Our work offers insights into understanding evolutionary dynamics of spatially extended systems ubiquitous in biology and ecology.展开更多
Many previous studies have shown that the environment plays an important role for social individuals. In this paper, we integrate the environmental factor, which is defined as the average payoff of all a player's nei...Many previous studies have shown that the environment plays an important role for social individuals. In this paper, we integrate the environmental factor, which is defined as the average payoff of all a player's neighbours, with the standard Fermi updating rule by introducing a tunable parameter, w. It is found that the level of cooperation increases remarkably, and that the cooperators can better resist the invasion of defection with an increase in w. This interesting phenomenon is then explained from a microscopic view. In addition, the universality of this mechanism is also proved with the help of the small-world network and the random regular graph. This work may be helpful in understanding cooperation behaviour in species from unicellular organisms up to human beings.展开更多
Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optima...Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optimal control is designed for promoting cooperation based on the recent advances in mechanisms for the evolution of cooperation. Two con- trol strategies are proposed: compensation control strategy for the cooperator when playing against a defector and reward control strategy for cooperator when playing against a coop- erator. The feasibility and effectiveness of these control strategies for promoting cooperation in different stages are analyzed. The reward for cooperation can't prevent defection from being evolutionary stable strategy (ESS). On the other hand, compensation for the coopera- tor can't prevent defection from emerging and sustaining. By considering the effect and the cost, an optimal control scheme with constraint on the admissible control set is put forward. By analyzing the special nonlinear system of replicator dynamics, the exact analytic solution of the optimal control scheme is obtained based on the maximum principle. Finally, the effectiveness of the proposed method is illustrated by examples.展开更多
The emergence of cooperation still remains a fundamental conundrum in the social and behavior sciences.We introduce a new mechanism,deposit mechanism,into theoretical model to explore how this mechanism promotes coope...The emergence of cooperation still remains a fundamental conundrum in the social and behavior sciences.We introduce a new mechanism,deposit mechanism,into theoretical model to explore how this mechanism promotes cooperation in a well-mixed population.Firstly,we extend the common binary-strategy combination of cooperation and defection in public good game by adding a third strategy,namely,deposit cooperation.The players with deposit cooperation strategy pay a deposit in advance to obtain the benefits of public good at a lower contributions compared with the players with cooperation strategy,when the provision of public good is successful.Then,we explore the evolution of cooperation in the public good game with deposit by means of the replicator dynamics.Theoretical computations and stimulations show that the deposit mechanism can promote cooperation in a well-mixed population,and the numbers of equilibrium point are determined by variables of public good game.On the one hand,when the coexistence of cooperators and defectors is the stable equilibrium point in the evolutionary system,increasing the threshold of public good and adopting the weak altruism way for share benefits can enhance the level of cooperation in the population.On the other hand,if the coexistence of deposit cooperators and defectors is the stable equilibrium point,it is effective to promote the deposit cooperation by lowering the values of discount and deposit,and raising the threshold of public good.展开更多
In this paper, the Biham-Middleton-Levine (BML) model with consideration of cooperative willingness has been proposed to study the traffic flow in urban networks. An evolutionary game with a cooperative willingness ...In this paper, the Biham-Middleton-Levine (BML) model with consideration of cooperative willingness has been proposed to study the traffic flow in urban networks. An evolutionary game with a cooperative willingness profile is intro-duced to deal with conflicts between disturbing neighbors. Simulation results suggest that imitating cooperative willingness can ease the effect of premature seizure on traffic flow due to the introduction of evolutionary games. Phase diagrams with a strategy profile and cooperative willingness profile have been investigated in detail. Our findings also prove that by imitating the more successful, cooperative willingness instead of simply the more successful strategies, the evolution of cooperation is significantly promoted, hence improving the order of cooperation and relieving the pressure of traffic networks.展开更多
In this study,we propose a spatial prisoner's dilemma game model with a 2-stage strategy updating rule,and focus on the cooperation behavior of the system.In the first stage,i.e.,the pre-learning stage,a focal player...In this study,we propose a spatial prisoner's dilemma game model with a 2-stage strategy updating rule,and focus on the cooperation behavior of the system.In the first stage,i.e.,the pre-learning stage,a focal player decides whether to update his strategy according to the pre-learning factor β and the payoff difference between himself and the average of his neighbors.If the player makes up his mind to update,he enters into the second stage,i.e.,the learning stage,and adopts a strategy of a randomly selected neighbor according to the standard Fermi updating rule.The simulation results show that the cooperation level has a non-trivial dependence on the pre-learning factor.Generally,the cooperation frequency decreases as the pre-learning factor increases;but a high cooperation level can be obtained in the intermediate region of- 3〈 β 〈-1.We then give some explanations via studying the co-action of pre-learning and learning.Our results may sharpen the understanding of the influence of the strategy updating rule on evolutionary games.展开更多
We propose an evolutionary snowdrift game model for heterogeneous systems with two types of agents, in which the inner-directed agents adopt the memory-based updating rule while the copycat-like ones take the uncondit...We propose an evolutionary snowdrift game model for heterogeneous systems with two types of agents, in which the inner-directed agents adopt the memory-based updating rule while the copycat-like ones take the unconditional imitation rule; moreover, each'agent can change his type to adopt another updating rule once the number he sequentially loses the game at is beyond his upper limit of tolerance. The cooperative behaviors of such heterogeneous systems are then investigated by Monte Carlo simulations. The numerical results show the equilibrium cooperation frequency and composition as functions of the cost-to-benefit ratio r are both of plateau structures with discontinuous steplike jumps, and the number of plateaux varies non-monotonically with the upper limit of tolerance VT as well as the initial composition of agents faO. Besides, the quantities of the cooperation frequency and composition are dependent crucially on the system parameters including VT, faO, and r. One intriguing observation is that when the upper limit of tolerance is small, the cooperation frequency will be abnormally enhanced with the increase of the cost-to-benefit ratio in the range of 0 〈 r 〈 1/4. We then probe into the relative cooperation frequencies of either type of agents, which are also of plateau structures dependent on the system parameters. Our results may be helpful to understand the cooperative behaviors of heterogenous agent systems.展开更多
We investigate a simple evolutionary game model in one dimension. It is found that the system exhibits a discontinuous phase transition from a defection state to a cooperation state when the b payoff of a defector exp...We investigate a simple evolutionary game model in one dimension. It is found that the system exhibits a discontinuous phase transition from a defection state to a cooperation state when the b payoff of a defector exploiting a cooperator is small. Furthermore, if b is large enough, then the system exhibits two continuous phase transitions between two absorbing states and a coexistence state of cooperation and defection, respectively. The tri-critical point is roughly estimated. Moreover, it is found that the critical behavior of the continuous phase transition with an absorbing state is in the directed percolation universality class.展开更多
文摘This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method.
基金funded by National Social Science Fund the Evolution of Japan’s Food Security Policy and Its Enlightenment to China[Grant No.22CSS016].
文摘This study explored the factors influencing cooperative innovation in environmentally friendly agricultural biotechnology in China.First,we constructed an evolutionary game model comprising the factors of net income of cooperative innovation,net income of independent innovation,market constraints,and government subsidies.Using MATLAB simulation,we assigned different values to the aforementioned variables to explore the evolutionary trend of innovators’willingness to cooperate.Results showed that when the values of net income of cooperative innovation,net income of independent innovation,market constraints,and government subsidies exceeded the threshold,innovators’willingness to cooperate was significantly enhanced.Furthermore,the proportion of innovators who cooperated with others gradually increased to 100%;otherwise,it gradually decreased to 0%.Comparing the simulation curve with the real evolution curve of cooperative innovation in agricultural biotechnology in China,we found that the gradual decline in the willingness to cooperate could be due to insufficient subsidies for cooperative innovation,low income from cooperative innovation,weak profitability of innovators,and weak market constraints.
基金support from NSFC,China(62036002,62273226)is gratefully acknowledgedsupported by the Fundamental Research Funds for Central Universities,Xidian University,China(JB210414).
文摘Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations.It still remains an open problem to fully understand evolutionary game dynamics on networks except for certain limiting scenarios such as weak selection.Here we study the evolutionary dynamics of spatial games under strong selection where strategy evolution of individuals becomes deterministic in a fashion of winners taking all.We show that the long term behavior of the evolutionary process eventually converges to a particular basin of attraction,which is either a periodic cycle or a single fixed state depending on specific initial conditions and model parameters.In particular,we find that symmetric starting configurations can induce an exceedingly long transient phase encompassing a large number of aesthetic spatial patterns including the prominent kaleidoscopic cooperation.Our finding holds for any population structure and a broad class of finite games beyond the Prisoner’s Dilemma.Our work offers insights into understanding evolutionary dynamics of spatially extended systems ubiquitous in biology and ecology.
基金Project supported by the CAS/USTC Special Grant for Postgraduate Research,Innovation,and Practice
文摘Many previous studies have shown that the environment plays an important role for social individuals. In this paper, we integrate the environmental factor, which is defined as the average payoff of all a player's neighbours, with the standard Fermi updating rule by introducing a tunable parameter, w. It is found that the level of cooperation increases remarkably, and that the cooperators can better resist the invasion of defection with an increase in w. This interesting phenomenon is then explained from a microscopic view. In addition, the universality of this mechanism is also proved with the help of the small-world network and the random regular graph. This work may be helpful in understanding cooperation behaviour in species from unicellular organisms up to human beings.
文摘Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optimal control is designed for promoting cooperation based on the recent advances in mechanisms for the evolution of cooperation. Two con- trol strategies are proposed: compensation control strategy for the cooperator when playing against a defector and reward control strategy for cooperator when playing against a coop- erator. The feasibility and effectiveness of these control strategies for promoting cooperation in different stages are analyzed. The reward for cooperation can't prevent defection from being evolutionary stable strategy (ESS). On the other hand, compensation for the coopera- tor can't prevent defection from emerging and sustaining. By considering the effect and the cost, an optimal control scheme with constraint on the admissible control set is put forward. By analyzing the special nonlinear system of replicator dynamics, the exact analytic solution of the optimal control scheme is obtained based on the maximum principle. Finally, the effectiveness of the proposed method is illustrated by examples.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71871171,71871173,and 71701076)
文摘The emergence of cooperation still remains a fundamental conundrum in the social and behavior sciences.We introduce a new mechanism,deposit mechanism,into theoretical model to explore how this mechanism promotes cooperation in a well-mixed population.Firstly,we extend the common binary-strategy combination of cooperation and defection in public good game by adding a third strategy,namely,deposit cooperation.The players with deposit cooperation strategy pay a deposit in advance to obtain the benefits of public good at a lower contributions compared with the players with cooperation strategy,when the provision of public good is successful.Then,we explore the evolution of cooperation in the public good game with deposit by means of the replicator dynamics.Theoretical computations and stimulations show that the deposit mechanism can promote cooperation in a well-mixed population,and the numbers of equilibrium point are determined by variables of public good game.On the one hand,when the coexistence of cooperators and defectors is the stable equilibrium point in the evolutionary system,increasing the threshold of public good and adopting the weak altruism way for share benefits can enhance the level of cooperation in the population.On the other hand,if the coexistence of deposit cooperators and defectors is the stable equilibrium point,it is effective to promote the deposit cooperation by lowering the values of discount and deposit,and raising the threshold of public good.
基金Project supported by the National Natural Science Foundation of China(Grant No.11262003)the Hong Kong Research Grants Council(RGC)-General Research Fund(GRF)Grant,China(Grant No.CityU 118212)+1 种基金the Strategic Research Grant,City University of Hong Kong,China(Grant No.CityU-SRG 7002718)the Graduate Student Innovative Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.YCSZ2012013)
文摘In this paper, the Biham-Middleton-Levine (BML) model with consideration of cooperative willingness has been proposed to study the traffic flow in urban networks. An evolutionary game with a cooperative willingness profile is intro-duced to deal with conflicts between disturbing neighbors. Simulation results suggest that imitating cooperative willingness can ease the effect of premature seizure on traffic flow due to the introduction of evolutionary games. Phase diagrams with a strategy profile and cooperative willingness profile have been investigated in detail. Our findings also prove that by imitating the more successful, cooperative willingness instead of simply the more successful strategies, the evolution of cooperation is significantly promoted, hence improving the order of cooperation and relieving the pressure of traffic networks.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y1110766,Y1101316,Y6110317,and LY12A05003)the Key Science and Technology Plan Program of Zhejiang Province,China (Grant No. 2010C13021)
文摘In this study,we propose a spatial prisoner's dilemma game model with a 2-stage strategy updating rule,and focus on the cooperation behavior of the system.In the first stage,i.e.,the pre-learning stage,a focal player decides whether to update his strategy according to the pre-learning factor β and the payoff difference between himself and the average of his neighbors.If the player makes up his mind to update,he enters into the second stage,i.e.,the learning stage,and adopts a strategy of a randomly selected neighbor according to the standard Fermi updating rule.The simulation results show that the cooperation level has a non-trivial dependence on the pre-learning factor.Generally,the cooperation frequency decreases as the pre-learning factor increases;but a high cooperation level can be obtained in the intermediate region of- 3〈 β 〈-1.We then give some explanations via studying the co-action of pre-learning and learning.Our results may sharpen the understanding of the influence of the strategy updating rule on evolutionary games.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175131 and 10875086)
文摘We propose an evolutionary snowdrift game model for heterogeneous systems with two types of agents, in which the inner-directed agents adopt the memory-based updating rule while the copycat-like ones take the unconditional imitation rule; moreover, each'agent can change his type to adopt another updating rule once the number he sequentially loses the game at is beyond his upper limit of tolerance. The cooperative behaviors of such heterogeneous systems are then investigated by Monte Carlo simulations. The numerical results show the equilibrium cooperation frequency and composition as functions of the cost-to-benefit ratio r are both of plateau structures with discontinuous steplike jumps, and the number of plateaux varies non-monotonically with the upper limit of tolerance VT as well as the initial composition of agents faO. Besides, the quantities of the cooperation frequency and composition are dependent crucially on the system parameters including VT, faO, and r. One intriguing observation is that when the upper limit of tolerance is small, the cooperation frequency will be abnormally enhanced with the increase of the cost-to-benefit ratio in the range of 0 〈 r 〈 1/4. We then probe into the relative cooperation frequencies of either type of agents, which are also of plateau structures dependent on the system parameters. Our results may be helpful to understand the cooperative behaviors of heterogenous agent systems.
基金Project supported by the National Natural Science Foundation of China (Grand No. 10575055)K. C. Wong Magna Fund in Ningbo University
文摘We investigate a simple evolutionary game model in one dimension. It is found that the system exhibits a discontinuous phase transition from a defection state to a cooperation state when the b payoff of a defector exploiting a cooperator is small. Furthermore, if b is large enough, then the system exhibits two continuous phase transitions between two absorbing states and a coexistence state of cooperation and defection, respectively. The tri-critical point is roughly estimated. Moreover, it is found that the critical behavior of the continuous phase transition with an absorbing state is in the directed percolation universality class.