Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective...Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization(BESO).The conventional BESO is provided with constant evolutionary volume ratio(EVR),whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements.To address the issue,the modified BESO with variable EVR is introduced.To compromise the natural frequency and the dynamic stiffness,a weighting scheme of sensitivity numbers is employed to form the Pareto solution space.Several numerical examples demonstrate that the optimal solutions obtained from the modified BESO method have good agreement with those from the classic BESO method.Most importantly,the dynamic removal strategy with the variable EVR sharply springs up the optimization process.Therefore,it is concluded that the modified BESO method with variable EVR can solve structural design problems using multi-objective optimization.展开更多
A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dyn...A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load.A weighted function is introduced to regulate the mass and stiffness matrix of an element,which has the inefficient element gradually removed from the design domain as if it were undergoing damage.Aiming at maximizing the natural frequency of a structure,the frequency optimization formulation is proposed using the SBESO technique.The effects of various weight functions including constant,linear and sine functions on structural optimization are compared.With the equivalent static load(ESL)method,the dynamic stiffness optimization of a structure is formulated by the SBESO technique.Numerical examples show that compared with the classic BESO method,the SBESO method can efficiently suppress the excessive element deletion by adjusting the element deletion rate and weight function.It is also found that the proposed SBESO technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the classic BESO technique.展开更多
With the development of edge devices and cloud computing,the question of how to accomplish machine learning and optimization tasks in a privacy-preserving and secure way has attracted increased attention over the past...With the development of edge devices and cloud computing,the question of how to accomplish machine learning and optimization tasks in a privacy-preserving and secure way has attracted increased attention over the past decade.As a privacy-preserving distributed machine learning method,federated learning(FL)has become popular in the last few years.However,the data privacy issue also occurs when solving optimization problems,which has received little attention so far.This survey paper is concerned with privacy-preserving optimization,with a focus on privacy-preserving data-driven evolutionary optimization.It aims to provide a roadmap from secure privacy-preserving learning to secure privacy-preserving optimization by summarizing security mechanisms and privacy-preserving approaches that can be employed in machine learning and optimization.We provide a formal definition of security and privacy in learning,followed by a comprehensive review of FL schemes and cryptographic privacy-preserving techniques.Then,we present ideas on the emerging area of privacy-preserving optimization,ranging from privacy-preserving distributed optimization to privacy-preserving evolutionary optimization and privacy-preserving Bayesian optimization(BO).We further provide a thorough security analysis of BO and evolutionary optimization methods from the perspective of inferring attacks and active attacks.On the basis of the above,an in-depth discussion is given to analyze what FL and distributed optimization strategies can be used for the design of federated optimization and what additional requirements are needed for achieving these strategies.Finally,we conclude the survey by outlining open questions and remaining challenges in federated data-driven optimization.We hope this survey can provide insights into the relationship between FL and federated optimization and will promote research interest in secure federated optimization.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier ...In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier Transform(FFT)algorithms,convolution,image processing algorithms,etcetera.In the domain of digital signal processing,the use of normalization architecture is very vast.The main objective of using normalization is to performcomparison and shift operations.In this research paper,an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer,Adder etc.The proposed normalization algorithm is further used in designing an 8×8 bit Signed Floating-Point Multiply-Accumulate(SFMAC)architecture.Since the SFMAC can accept an 8-bit significand and a 3-bit exponent,the input to the said architecture can be somewhere between−(7.96872)_(10) to+(7.96872)_(10).The proposed architecture is designed and implemented using the Cadence Virtuoso using 90 and 130 nm technologies(in Generic Process Design Kit(GPDK)and Taiwan Semiconductor Manufacturing Company(TSMC),respectively).To reduce the power consumption of the proposed normalization architecture,techniques such as“block enabling”and“clock gating”are used rigorously.According to the analysis done on Cadence,the proposed architecture uses the least amount of power compared to its current predecessors.展开更多
At present,most researches on the critical rainfall threshold of debris flow initiation use a linear model obtained through regression.With relatively weak fault tolerance,this method not only ignores nonlinear effect...At present,most researches on the critical rainfall threshold of debris flow initiation use a linear model obtained through regression.With relatively weak fault tolerance,this method not only ignores nonlinear effects but also is susceptible to singular noise samples,which makes it difficult to characterize the true quantization relationship of the rainfall threshold.Besides,the early warning threshold determined by statistical parameters is susceptible to negative samples(samples where no debris flow has occurred),which leads to uncertainty in the reliability of the early warning results by the regression curve.To overcome the above limitations,this study develops a data-driven multiobjective evolutionary optimization method that combines an artificial neural network(ANN)and a multiobjective evolutionary optimization implemented by particle swarm optimization(PSO).Firstly,the Pareto optimality method is used to represent the nonlinear and conflicting critical thresholds for the rainfall intensity I and the rainfall duration D.An ANN is used to construct a dual-target(dual-task)predictive surrogate model,and then a PSO-based multiobjective evolutionary optimization algorithm is applied to train the ANN and stochastically search the trained ANN for obtaining the Pareto front of the I-D surrogate prediction model,which is intended to overcome the limitations of the existing linear regression-based threshold methods.Finally,a double early warning curve model that can effectively control the false alarm rate and negative alarm rate of hazard warnings are proposed based on the decision space and target space maps.This study provides theoretical guidance for the early warning and forecasting of debris flows and has strong applicability.展开更多
Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirect...Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization(BESO)under an aperiodic load is proposed in this paper.In viewof the severe nonlinearity of fatigue damagewith respect to design variables,effective stress cycles are extracted through transient dynamic analysis.Based on the Miner cumulative damage theory and life requirements,a fatigue constraint is first quantified and then transformed into a stress problem.Then,a normalized termination criterion is proposed by approximatemaximum stress measured by global stress using a P-normaggregation function.Finally,optimization examples show that the proposed algorithm can not only meet the requirements of fatigue life but also obtain a reasonable configuration.展开更多
Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimi...Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimization,many schemes are added to the conventional bi-directional evolutionary structural optimization(BESO)method in the previous studies.However,these schemes degrade the generality of BESO and increase the computational cost.This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method.A global stress measure constructed by p-norm function is treated as the objective function.To stabilize the optimization process,both qp-relaxation and sensitivity weight scheme are introduced.Design variables are updated by the conventional BESO method.Several 2D and 3D examples are used to demonstrate the validity of the proposed method.The results show that the optimization process can be stabilized by qp-relaxation.The value of q and p are crucial to reasonable solutions.The proposed sensitivity weight scheme further stabilizes the optimization process and evenly distributes the stress field.The computational efficiency of the proposed method is higher than the previous methods because it keeps the generality of BESO and does not need additional schemes.展开更多
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.展开更多
As the number of objectives increases,the performance of the Pareto dominance-based Evolutionary Multi-objective Optimization( EMO) algorithms such as NSGA-II,SPEA2 severely deteriorates due to the drastic increase in...As the number of objectives increases,the performance of the Pareto dominance-based Evolutionary Multi-objective Optimization( EMO) algorithms such as NSGA-II,SPEA2 severely deteriorates due to the drastic increase in the Pareto-incomparable solutions. We propose a sorting method which classifies these incomparable solutions into several ordered classes by using the decision maker's( DM) preference information.This is accomplished by designing an interactive evolutionary algorithm and constructing convex cones. This method allows the DMs to drive the search process toward a preferred region of the Pareto optimal front. The performance of the proposed algorithm is assessed for two,three,and four-objective knapsack problems. The results demonstrate the algorithm ' s ability to converge to the most preferred point. The evaluation and comparison of the results indicate that the proposed approach gives better solutions than that of NSGA-II. In addition,the approach is more efficient compared to NSGA-II in terms of the number of generations required to reach the preferred point.展开更多
Optimizing operational parameters for syngas production of Texaco coal-water slurry gasifier studied in this paper is a complicated nonlinear constrained problem concerning 3 BP(Error Back Propagation) neural networks...Optimizing operational parameters for syngas production of Texaco coal-water slurry gasifier studied in this paper is a complicated nonlinear constrained problem concerning 3 BP(Error Back Propagation) neural networks. To solve this model, a new 3-layer cultural evolving algorithm framework which has a population space, a medium space and a belief space is firstly conceived. Standard differential evolution algorithm(DE), genetic algorithm(GA), and particle swarm optimization algorithm(PSO) are embedded in this framework to build 3-layer mixed cultural DE/GA/PSO(3LM-CDE, 3LM-CGA, and 3LM-CPSO) algorithms. The accuracy and efficiency of the proposed hybrid algorithms are firstly tested in 20 benchmark nonlinear constrained functions. Then, the operational optimization model for syngas production in a Texaco coal-water slurry gasifier of a real-world chemical plant is solved effectively. The simulation results are encouraging that the 3-layer cultural algorithm evolving framework suggests ways in which the performance of DE, GA, PSO and other population-based evolutionary algorithms(EAs) can be improved,and the optimal operational parameters based on 3LM-CDE algorithm of the syngas production in the Texaco coalwater slurry gasifier shows outstanding computing results than actual industry use and other algorithms.展开更多
Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields.Several metaheuristics and evolutionary optimization algorithms...Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields.Several metaheuristics and evolutionary optimization algorithms have been emerged recently in the literature and gained widespread attention,such as particle swarm optimization(PSO),whale optimization algorithm(WOA),grey wolf optimization algorithm(GWO),genetic algorithm(GA),and gravitational search algorithm(GSA).According to the literature,no one metaheuristic optimization algorithm can handle all present optimization problems.Hence novel optimization methodologies are still needed.The Al-Biruni earth radius(BER)search optimization algorithm is proposed in this paper.The proposed algorithm was motivated by the behavior of swarm members in achieving their global goals.The search space around local solutions to be explored is determined by Al-Biruni earth radius calculation method.A comparative analysis with existing state-of-the-art optimization algorithms corroborated the findings of BER’s validation and testing against seven mathematical optimization problems.The results show that BER can both explore and avoid local optima.BER has also been tested on an engineering design optimization problem.The results reveal that,in terms of performance and capability,BER outperforms the performance of state-of-the-art metaheuristic optimization algorithms.展开更多
In real life,a large amount of data describing the same learning task may be stored in different institutions(called participants),and these data cannot be shared among par-ticipants due to privacy protection.The case...In real life,a large amount of data describing the same learning task may be stored in different institutions(called participants),and these data cannot be shared among par-ticipants due to privacy protection.The case that different attributes/features of the same instance are stored in different institutions is called vertically distributed data.The pur-pose of vertical‐federated feature selection(FS)is to reduce the feature dimension of vertical distributed data jointly without sharing local original data so that the feature subset obtained has the same or better performance as the original feature set.To solve this problem,in the paper,an embedded vertical‐federated FS algorithm based on particle swarm optimisation(PSO‐EVFFS)is proposed by incorporating evolutionary FS into the SecureBoost framework for the first time.By optimising both hyper‐parameters of the XGBoost model and feature subsets,PSO‐EVFFS can obtain a feature subset,which makes the XGBoost model more accurate.At the same time,since different participants only share insensitive parameters such as model loss function,PSO‐EVFFS can effec-tively ensure the privacy of participants'data.Moreover,an ensemble ranking strategy of feature importance based on the XGBoost tree model is developed to effectively remove irrelevant features on each participant.Finally,the proposed algorithm is applied to 10 test datasets and compared with three typical vertical‐federated learning frameworks and two variants of the proposed algorithm with different initialisation strategies.Experi-mental results show that the proposed algorithm can significantly improve the classifi-cation performance of selected feature subsets while fully protecting the data privacy of all participants.展开更多
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee...With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.展开更多
In this paper,a new algorithm combining the features of bi-direction evolutionary structural optimization(BESO)and reinforcement learning(RL)is proposed for continuum structural topology optimization(STO).In contrast ...In this paper,a new algorithm combining the features of bi-direction evolutionary structural optimization(BESO)and reinforcement learning(RL)is proposed for continuum structural topology optimization(STO).In contrast to conventional approaches which only generate a certain quasi-optimal solution,the goal of the combined method is to provide more quasi-optimal solutions for designers such as the idea of generative design.Two key components were adopted.First,besides sensitivity,value function updated by Monte-Carlo reinforcement learning was utilized to measure the importance of each element,which made the solving process convergent and closer to the optimum.Second,ε-greedy policy added a random perturbation to the main search direction so as to extend the search ability.Finally,the quality and diversity of solutions could be guaranteed by controlling the value of compliance as well as Intersection-over-Union(IoU).Results of several 2D and 3D compliance minimization problems,including a geometrically nonlinear case,show that the combined method is capable of generating a group of good and different solutions that satisfy various possible requirements in engineering design within acceptable computation cost.展开更多
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
The particle swarm optimization(PSO)algorithm is an established nature-inspired population-based meta-heuristic that replicates the synchronizing movements of birds and sh.PSO is essentially an unconstrained algorithm...The particle swarm optimization(PSO)algorithm is an established nature-inspired population-based meta-heuristic that replicates the synchronizing movements of birds and sh.PSO is essentially an unconstrained algorithm and requires constraint handling techniques(CHTs)to solve constrained optimization problems(COPs).For this purpose,we integrate two CHTs,the superiority of feasibility(SF)and the violation constraint-handling(VCH),with a PSO.These CHTs distinguish feasible solutions from infeasible ones.Moreover,in SF,the selection of infeasible solutions is based on their degree of constraint violations,whereas in VCH,the number of constraint violations by an infeasible solution is of more importance.Therefore,a PSO is adapted for constrained optimization,yielding two constrained variants,denoted SF-PSO and VCH-PSO.Both SF-PSO and VCH-PSO are evaluated with respect to ve engineering problems:the Himmelblau’s nonlinear optimization,the welded beam design,the spring design,the pressure vessel design,and the three-bar truss design.The simulation results show that both algorithms are consistent in terms of their solutions to these problems,including their different available versions.Comparison of the SF-PSO and the VCHPSO with other existing algorithms on the tested problems shows that the proposed algorithms have lower computational cost in terms of the number of function evaluations used.We also report our disagreement with some unjust comparisons made by other researchers regarding the tested problems and their different variants.展开更多
Combined sewer networks carry wastewater and stormwater together.Capacity limitation of these sewer networks results in combined sewer overflows(CSOs)during high-intensity storms.Untreated CSOs when directly discharge...Combined sewer networks carry wastewater and stormwater together.Capacity limitation of these sewer networks results in combined sewer overflows(CSOs)during high-intensity storms.Untreated CSOs when directly discharged to the nearby natural water bodies cause many environmental problems.Controlling existing urban sewer networks is one possible way of addressing the issues in urban wastewater systems.However,it is still a challenge,when considering the receiving water quality effects.This paper presents an evolutionary constrained multi-objective optimization approach to control the existing combined sewer networks.The control of online storage tanks was taken into account when controlling the combined sewer network.The developed multi-objective approach considers two important objectives,i.e.the pollution load to the receiving water from CSOs and the cost of the wastewater treatment.The proposed optimization algorithm is applied here to a realistic interceptor sewer system to demonstrate its effectiveness.展开更多
As a new intelligent optimization method,brain storm optimization(BSO)algorithm has been widely concerned for its advantages in solving classical optimization problems.Recently,an evolutionary classification optimizat...As a new intelligent optimization method,brain storm optimization(BSO)algorithm has been widely concerned for its advantages in solving classical optimization problems.Recently,an evolutionary classification optimization model based on BSO algorithm has been proposed,which proves its effectiveness in solving the classification problem.However,BSO algorithm also has defects.For example,large-scale datasets make the structure of the model complex,which affects its classification performance.In addition,in the process of optimization,the information of the dominant solution cannot be well preserved in BSO,which leads to its limitations in classification performance.Moreover,its generation strategy is inefficient in solving a variety of complex practical problems.Therefore,we briefly introduce the optimization model structure by feature selection.Besides,this paper retains the brainstorming process of BSO algorithm,and embeds the new generation strategy into BSO algorithm.Through the three generation methods of global optimal,local optimal and nearest neighbor,we can better retain the information of the dominant solution and improve the search efficiency.To verify the performance of the proposed generation strategy in solving the classification problem,twelve datasets are used in experiment.Experimental results show that the new generation strategy can improve the performance of BSO algorithm in solving classification problems.展开更多
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper prop...The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.51505096)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2020E064).
文摘Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization(BESO).The conventional BESO is provided with constant evolutionary volume ratio(EVR),whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements.To address the issue,the modified BESO with variable EVR is introduced.To compromise the natural frequency and the dynamic stiffness,a weighting scheme of sensitivity numbers is employed to form the Pareto solution space.Several numerical examples demonstrate that the optimal solutions obtained from the modified BESO method have good agreement with those from the classic BESO method.Most importantly,the dynamic removal strategy with the variable EVR sharply springs up the optimization process.Therefore,it is concluded that the modified BESO method with variable EVR can solve structural design problems using multi-objective optimization.
基金supported by the National Natural Science Foundation of China (Grant No.51505096)the Natural Science Foundation of Heilongjiang Province (Grant No.LH2020E064).
文摘A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load.A weighted function is introduced to regulate the mass and stiffness matrix of an element,which has the inefficient element gradually removed from the design domain as if it were undergoing damage.Aiming at maximizing the natural frequency of a structure,the frequency optimization formulation is proposed using the SBESO technique.The effects of various weight functions including constant,linear and sine functions on structural optimization are compared.With the equivalent static load(ESL)method,the dynamic stiffness optimization of a structure is formulated by the SBESO technique.Numerical examples show that compared with the classic BESO method,the SBESO method can efficiently suppress the excessive element deletion by adjusting the element deletion rate and weight function.It is also found that the proposed SBESO technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the classic BESO technique.
基金supported in part by the National Natural Science Foundation of China (62136003,62302147,62103150,62006053,and 62306097)in part by the China Postdoctoral Science Foundation (2021M691012)+1 种基金in part by the Natural Science Foundation of Guangdong Province (2022A1515010443)in part by the National Research,Development and Innovation Fund of Hungary under the Establishment of Competence Centers,Development of Research Infrastructure Programme funding scheme (2019-1.3.1-KK-2019-00011).
文摘With the development of edge devices and cloud computing,the question of how to accomplish machine learning and optimization tasks in a privacy-preserving and secure way has attracted increased attention over the past decade.As a privacy-preserving distributed machine learning method,federated learning(FL)has become popular in the last few years.However,the data privacy issue also occurs when solving optimization problems,which has received little attention so far.This survey paper is concerned with privacy-preserving optimization,with a focus on privacy-preserving data-driven evolutionary optimization.It aims to provide a roadmap from secure privacy-preserving learning to secure privacy-preserving optimization by summarizing security mechanisms and privacy-preserving approaches that can be employed in machine learning and optimization.We provide a formal definition of security and privacy in learning,followed by a comprehensive review of FL schemes and cryptographic privacy-preserving techniques.Then,we present ideas on the emerging area of privacy-preserving optimization,ranging from privacy-preserving distributed optimization to privacy-preserving evolutionary optimization and privacy-preserving Bayesian optimization(BO).We further provide a thorough security analysis of BO and evolutionary optimization methods from the perspective of inferring attacks and active attacks.On the basis of the above,an in-depth discussion is given to analyze what FL and distributed optimization strategies can be used for the design of federated optimization and what additional requirements are needed for achieving these strategies.Finally,we conclude the survey by outlining open questions and remaining challenges in federated data-driven optimization.We hope this survey can provide insights into the relationship between FL and federated optimization and will promote research interest in secure federated optimization.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
基金This work was supported by Research Support Fund(RSF)of Symbiosis International(Deemed University),Pune,India。
文摘In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier Transform(FFT)algorithms,convolution,image processing algorithms,etcetera.In the domain of digital signal processing,the use of normalization architecture is very vast.The main objective of using normalization is to performcomparison and shift operations.In this research paper,an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer,Adder etc.The proposed normalization algorithm is further used in designing an 8×8 bit Signed Floating-Point Multiply-Accumulate(SFMAC)architecture.Since the SFMAC can accept an 8-bit significand and a 3-bit exponent,the input to the said architecture can be somewhere between−(7.96872)_(10) to+(7.96872)_(10).The proposed architecture is designed and implemented using the Cadence Virtuoso using 90 and 130 nm technologies(in Generic Process Design Kit(GPDK)and Taiwan Semiconductor Manufacturing Company(TSMC),respectively).To reduce the power consumption of the proposed normalization architecture,techniques such as“block enabling”and“clock gating”are used rigorously.According to the analysis done on Cadence,the proposed architecture uses the least amount of power compared to its current predecessors.
基金financially supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0906)National Natural Science Foundation of China(No.41901008 and No.61976046)+3 种基金National Key R&D Program of China(No.2017YFC1502504)the Fundamental Research Funds for the Central Universities(Grant No.2682018CX05)Beijing Municipal Science and Technology Project(Z191100001419015)financially supported by the China Scholarship Council。
文摘At present,most researches on the critical rainfall threshold of debris flow initiation use a linear model obtained through regression.With relatively weak fault tolerance,this method not only ignores nonlinear effects but also is susceptible to singular noise samples,which makes it difficult to characterize the true quantization relationship of the rainfall threshold.Besides,the early warning threshold determined by statistical parameters is susceptible to negative samples(samples where no debris flow has occurred),which leads to uncertainty in the reliability of the early warning results by the regression curve.To overcome the above limitations,this study develops a data-driven multiobjective evolutionary optimization method that combines an artificial neural network(ANN)and a multiobjective evolutionary optimization implemented by particle swarm optimization(PSO).Firstly,the Pareto optimality method is used to represent the nonlinear and conflicting critical thresholds for the rainfall intensity I and the rainfall duration D.An ANN is used to construct a dual-target(dual-task)predictive surrogate model,and then a PSO-based multiobjective evolutionary optimization algorithm is applied to train the ANN and stochastically search the trained ANN for obtaining the Pareto front of the I-D surrogate prediction model,which is intended to overcome the limitations of the existing linear regression-based threshold methods.Finally,a double early warning curve model that can effectively control the false alarm rate and negative alarm rate of hazard warnings are proposed based on the decision space and target space maps.This study provides theoretical guidance for the early warning and forecasting of debris flows and has strong applicability.
基金Chinese National Natural Science Foundation(No.51890881)Science and Technology Project of Hebei Education Department(Nos.ZD2020156,QN2018228).
文摘Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization(BESO)under an aperiodic load is proposed in this paper.In viewof the severe nonlinearity of fatigue damagewith respect to design variables,effective stress cycles are extracted through transient dynamic analysis.Based on the Miner cumulative damage theory and life requirements,a fatigue constraint is first quantified and then transformed into a stress problem.Then,a normalized termination criterion is proposed by approximatemaximum stress measured by global stress using a P-normaggregation function.Finally,optimization examples show that the proposed algorithm can not only meet the requirements of fatigue life but also obtain a reasonable configuration.
基金supported by National Natural Science Foundation of China[Grant No.51575399]the National Key Research and Development Program of China[Grant No.2016YFB0101602].
文摘Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimization,many schemes are added to the conventional bi-directional evolutionary structural optimization(BESO)method in the previous studies.However,these schemes degrade the generality of BESO and increase the computational cost.This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method.A global stress measure constructed by p-norm function is treated as the objective function.To stabilize the optimization process,both qp-relaxation and sensitivity weight scheme are introduced.Design variables are updated by the conventional BESO method.Several 2D and 3D examples are used to demonstrate the validity of the proposed method.The results show that the optimization process can be stabilized by qp-relaxation.The value of q and p are crucial to reasonable solutions.The proposed sensitivity weight scheme further stabilizes the optimization process and evenly distributes the stress field.The computational efficiency of the proposed method is higher than the previous methods because it keeps the generality of BESO and does not need additional schemes.
基金Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
文摘Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
文摘As the number of objectives increases,the performance of the Pareto dominance-based Evolutionary Multi-objective Optimization( EMO) algorithms such as NSGA-II,SPEA2 severely deteriorates due to the drastic increase in the Pareto-incomparable solutions. We propose a sorting method which classifies these incomparable solutions into several ordered classes by using the decision maker's( DM) preference information.This is accomplished by designing an interactive evolutionary algorithm and constructing convex cones. This method allows the DMs to drive the search process toward a preferred region of the Pareto optimal front. The performance of the proposed algorithm is assessed for two,three,and four-objective knapsack problems. The results demonstrate the algorithm ' s ability to converge to the most preferred point. The evaluation and comparison of the results indicate that the proposed approach gives better solutions than that of NSGA-II. In addition,the approach is more efficient compared to NSGA-II in terms of the number of generations required to reach the preferred point.
基金Supported by the National Natural Science Foundation of China(61174040,U1162110,21206174)Shanghai Commission of Nature Science(12ZR1408100)
文摘Optimizing operational parameters for syngas production of Texaco coal-water slurry gasifier studied in this paper is a complicated nonlinear constrained problem concerning 3 BP(Error Back Propagation) neural networks. To solve this model, a new 3-layer cultural evolving algorithm framework which has a population space, a medium space and a belief space is firstly conceived. Standard differential evolution algorithm(DE), genetic algorithm(GA), and particle swarm optimization algorithm(PSO) are embedded in this framework to build 3-layer mixed cultural DE/GA/PSO(3LM-CDE, 3LM-CGA, and 3LM-CPSO) algorithms. The accuracy and efficiency of the proposed hybrid algorithms are firstly tested in 20 benchmark nonlinear constrained functions. Then, the operational optimization model for syngas production in a Texaco coal-water slurry gasifier of a real-world chemical plant is solved effectively. The simulation results are encouraging that the 3-layer cultural algorithm evolving framework suggests ways in which the performance of DE, GA, PSO and other population-based evolutionary algorithms(EAs) can be improved,and the optimal operational parameters based on 3LM-CDE algorithm of the syngas production in the Texaco coalwater slurry gasifier shows outstanding computing results than actual industry use and other algorithms.
文摘Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields.Several metaheuristics and evolutionary optimization algorithms have been emerged recently in the literature and gained widespread attention,such as particle swarm optimization(PSO),whale optimization algorithm(WOA),grey wolf optimization algorithm(GWO),genetic algorithm(GA),and gravitational search algorithm(GSA).According to the literature,no one metaheuristic optimization algorithm can handle all present optimization problems.Hence novel optimization methodologies are still needed.The Al-Biruni earth radius(BER)search optimization algorithm is proposed in this paper.The proposed algorithm was motivated by the behavior of swarm members in achieving their global goals.The search space around local solutions to be explored is determined by Al-Biruni earth radius calculation method.A comparative analysis with existing state-of-the-art optimization algorithms corroborated the findings of BER’s validation and testing against seven mathematical optimization problems.The results show that BER can both explore and avoid local optima.BER has also been tested on an engineering design optimization problem.The results reveal that,in terms of performance and capability,BER outperforms the performance of state-of-the-art metaheuristic optimization algorithms.
基金supported by the two funding sources:Scientific Innovation 2030 Major Project for New Generation of AI,Ministry of Science and Technology of the Peoples Republic of China(2020AAA0107300)National Natural Science Foundation of China(62133015).
文摘In real life,a large amount of data describing the same learning task may be stored in different institutions(called participants),and these data cannot be shared among par-ticipants due to privacy protection.The case that different attributes/features of the same instance are stored in different institutions is called vertically distributed data.The pur-pose of vertical‐federated feature selection(FS)is to reduce the feature dimension of vertical distributed data jointly without sharing local original data so that the feature subset obtained has the same or better performance as the original feature set.To solve this problem,in the paper,an embedded vertical‐federated FS algorithm based on particle swarm optimisation(PSO‐EVFFS)is proposed by incorporating evolutionary FS into the SecureBoost framework for the first time.By optimising both hyper‐parameters of the XGBoost model and feature subsets,PSO‐EVFFS can obtain a feature subset,which makes the XGBoost model more accurate.At the same time,since different participants only share insensitive parameters such as model loss function,PSO‐EVFFS can effec-tively ensure the privacy of participants'data.Moreover,an ensemble ranking strategy of feature importance based on the XGBoost tree model is developed to effectively remove irrelevant features on each participant.Finally,the proposed algorithm is applied to 10 test datasets and compared with three typical vertical‐federated learning frameworks and two variants of the proposed algorithm with different initialisation strategies.Experi-mental results show that the proposed algorithm can significantly improve the classifi-cation performance of selected feature subsets while fully protecting the data privacy of all participants.
基金Project(50908082) supported by the National Natural Science Foundation of ChinaProject(2009ZK3111) supported by the Science and Technology Department of Hunan Province,China
文摘With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.
文摘In this paper,a new algorithm combining the features of bi-direction evolutionary structural optimization(BESO)and reinforcement learning(RL)is proposed for continuum structural topology optimization(STO).In contrast to conventional approaches which only generate a certain quasi-optimal solution,the goal of the combined method is to provide more quasi-optimal solutions for designers such as the idea of generative design.Two key components were adopted.First,besides sensitivity,value function updated by Monte-Carlo reinforcement learning was utilized to measure the importance of each element,which made the solving process convergent and closer to the optimum.Second,ε-greedy policy added a random perturbation to the main search direction so as to extend the search ability.Finally,the quality and diversity of solutions could be guaranteed by controlling the value of compliance as well as Intersection-over-Union(IoU).Results of several 2D and 3D compliance minimization problems,including a geometrically nonlinear case,show that the combined method is capable of generating a group of good and different solutions that satisfy various possible requirements in engineering design within acceptable computation cost.
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
基金The authors thank the Higher Education Commission,Pakistan,for supporting this research under the project NRPU-8925(M.A.J.and H.U.K.),https://www.hec.gowpk/。
文摘The particle swarm optimization(PSO)algorithm is an established nature-inspired population-based meta-heuristic that replicates the synchronizing movements of birds and sh.PSO is essentially an unconstrained algorithm and requires constraint handling techniques(CHTs)to solve constrained optimization problems(COPs).For this purpose,we integrate two CHTs,the superiority of feasibility(SF)and the violation constraint-handling(VCH),with a PSO.These CHTs distinguish feasible solutions from infeasible ones.Moreover,in SF,the selection of infeasible solutions is based on their degree of constraint violations,whereas in VCH,the number of constraint violations by an infeasible solution is of more importance.Therefore,a PSO is adapted for constrained optimization,yielding two constrained variants,denoted SF-PSO and VCH-PSO.Both SF-PSO and VCH-PSO are evaluated with respect to ve engineering problems:the Himmelblau’s nonlinear optimization,the welded beam design,the spring design,the pressure vessel design,and the three-bar truss design.The simulation results show that both algorithms are consistent in terms of their solutions to these problems,including their different available versions.Comparison of the SF-PSO and the VCHPSO with other existing algorithms on the tested problems shows that the proposed algorithms have lower computational cost in terms of the number of function evaluations used.We also report our disagreement with some unjust comparisons made by other researchers regarding the tested problems and their different variants.
文摘Combined sewer networks carry wastewater and stormwater together.Capacity limitation of these sewer networks results in combined sewer overflows(CSOs)during high-intensity storms.Untreated CSOs when directly discharged to the nearby natural water bodies cause many environmental problems.Controlling existing urban sewer networks is one possible way of addressing the issues in urban wastewater systems.However,it is still a challenge,when considering the receiving water quality effects.This paper presents an evolutionary constrained multi-objective optimization approach to control the existing combined sewer networks.The control of online storage tanks was taken into account when controlling the combined sewer network.The developed multi-objective approach considers two important objectives,i.e.the pollution load to the receiving water from CSOs and the cost of the wastewater treatment.The proposed optimization algorithm is applied here to a realistic interceptor sewer system to demonstrate its effectiveness.
基金supported by the National Natural Science Foundation of China(61876089,61403206,61876185,61902281)the opening Project of Jiangsu Key Laboratory of Data Science and Smart Software(No.2019DS302)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20141005)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(14KJB520025)the Engineering Research Center of Digital Forensics,Ministry of Education,and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘As a new intelligent optimization method,brain storm optimization(BSO)algorithm has been widely concerned for its advantages in solving classical optimization problems.Recently,an evolutionary classification optimization model based on BSO algorithm has been proposed,which proves its effectiveness in solving the classification problem.However,BSO algorithm also has defects.For example,large-scale datasets make the structure of the model complex,which affects its classification performance.In addition,in the process of optimization,the information of the dominant solution cannot be well preserved in BSO,which leads to its limitations in classification performance.Moreover,its generation strategy is inefficient in solving a variety of complex practical problems.Therefore,we briefly introduce the optimization model structure by feature selection.Besides,this paper retains the brainstorming process of BSO algorithm,and embeds the new generation strategy into BSO algorithm.Through the three generation methods of global optimal,local optimal and nearest neighbor,we can better retain the information of the dominant solution and improve the search efficiency.To verify the performance of the proposed generation strategy in solving the classification problem,twelve datasets are used in experiment.Experimental results show that the new generation strategy can improve the performance of BSO algorithm in solving classification problems.
文摘The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.