In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the g...In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment.展开更多
In evolutionary games,most studies on finite populations have focused on a single updating mechanism.However,given the differences in individual cognition,individuals may change their strategies according to different...In evolutionary games,most studies on finite populations have focused on a single updating mechanism.However,given the differences in individual cognition,individuals may change their strategies according to different updating mechanisms.For this reason,we consider two different aspiration-driven updating mechanisms in structured populations:satisfied-stay unsatisfied shift(SSUS)and satisfied-cooperate unsatisfied defect(SCUD).To simulate the game player’s learning process,this paper improves the particle swarm optimization algorithm,which will be used to simulate the game player’s strategy selection,i.e.,population particle swarm optimization(PPSO)algorithms.We find that in the prisoner’s dilemma,the conditions that SSUS facilitates the evolution of cooperation do not enable cooperation to emerge.In contrast,SCUD conditions that promote the evolution of cooperation enable cooperation to emerge.In addition,the invasion of SCUD individuals helps promote cooperation among SSUS individuals.Simulated by the PPSO algorithm,the theoretical approximation results are found to be consistent with the trend of change in the simulation results.展开更多
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ...Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.展开更多
Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,w...Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,which can be categorized into physics-based models and machine-learning models.Both types of models have their advantages and disadvantages.To obtain a more advanced MLCD prediction method,this study proposes a hybrid architecture,which combines the Evolutionary Game Theory(EGT)based model(considering data efficient and interpretable)and the Machine Learning(ML)based model(considering high prediction accuracy)to model the mandatory lane change decision of multi-style drivers(i.e.EGTML framework).Therefore,EGT is utilized to introduce physical information,which can describe the progressive cooperative interactions between drivers and predict the decision-making of multi-style drivers.The generalization of the EGTML method is further validated using four machine learning models:ANN,RF,LightGBM,and XGBoost.The superiority of EGTML is demonstrated using real-world data(i.e.,Next Generation SIMulation,NGSIM).The results of sensitivity analysis show that the EGTML model outperforms the general ML model,especially when the data is sparse.展开更多
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf...Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.展开更多
With the increasing proportion of renewable energy in the power market,the demands on government financial subsidies are gradually increasing.Thus,a joint green certificate-carbon emission right-electricity multi-mark...With the increasing proportion of renewable energy in the power market,the demands on government financial subsidies are gradually increasing.Thus,a joint green certificate-carbon emission right-electricity multi-market trading process is proposed to study the market-based strategy for renewable energy.Considering the commodity characteristics of green certificates and carbon emission rights,the dynamic cost models of green certificates and carbon rights are constructed based on the Rubinstein game and ladder pricing models.Furthermore,considering the irrational bidding behavior of energy suppliers in the actual electricity market,an evolutionary game based multi-market bidding optimization model is presented.Subsequently,it is solved using a composite differential evolutionary algorithm.Finally,the case study results reveal that the proposed model can increase profits and the consumption rate of renewable energy and reduce carbon emission.展开更多
The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to ...The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.展开更多
Autonomous cooperation of unmanned swarms is the research focus on“new combat forces”and“disruptive technologies”in military fields.The mechanism design is the fundamental way to realize autonomous cooperation.Fac...Autonomous cooperation of unmanned swarms is the research focus on“new combat forces”and“disruptive technologies”in military fields.The mechanism design is the fundamental way to realize autonomous cooperation.Facing the realistic requirements of a swarm network dynamic adjustment under the background of high dynamics and strong confrontation and aiming at the optimization of the coordination level,an adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game is designed.This paper analyzes military requirements and proposes the basic framework of autonomous cooperation of unmanned swarms,including the emergence of swarm intelligence,information network construction and collaborative mechanism design.Then,based on the framework,the adaptive dynamic reconfiguration mechanism is discussed in detail from two aspects:topology dynamics and strategy dynamics.Next,the unmanned swarms’community network is designed,and the network characteristics are analyzed.Moreover,the mechanism characteristics are analyzed by numerical simulation,focusing on the impact of key parameters,such as cost,benefit coefficient and adjustment rate on the level of swarm cooperation.Finally,the conclusion is made,which is expected to provide a theoretical reference and decision support for cooperative mode design and combat effectiveness generation of unmanned swarm operations.展开更多
Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations.It still remains an open problem to fully understand evolutionary game ...Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations.It still remains an open problem to fully understand evolutionary game dynamics on networks except for certain limiting scenarios such as weak selection.Here we study the evolutionary dynamics of spatial games under strong selection where strategy evolution of individuals becomes deterministic in a fashion of winners taking all.We show that the long term behavior of the evolutionary process eventually converges to a particular basin of attraction,which is either a periodic cycle or a single fixed state depending on specific initial conditions and model parameters.In particular,we find that symmetric starting configurations can induce an exceedingly long transient phase encompassing a large number of aesthetic spatial patterns including the prominent kaleidoscopic cooperation.Our finding holds for any population structure and a broad class of finite games beyond the Prisoner’s Dilemma.Our work offers insights into understanding evolutionary dynamics of spatially extended systems ubiquitous in biology and ecology.展开更多
Characteristics of knowledge exchanging behavior among individual agents in a knowledge dynamic interaction system are studied by using the game theory. An analytic model of evolutionary game of continuous dynamic kno...Characteristics of knowledge exchanging behavior among individual agents in a knowledge dynamic interaction system are studied by using the game theory. An analytic model of evolutionary game of continuous dynamic knowledge interaction behavior is founded based on the structure of the evolutionary game chain. Possible evolution trends of the model are discussed. Finally, evolutionary stable strategies (ESSs) of knowledge transactions among individual agents in the knowledge network are identified by simulation data. Stable charicteristics of ESS in a continuous knowledge exchanging team help employee to communicate and grasp the dynamic regulation of shared knowledge.展开更多
With the rapid improvement of urbanization and industrialization in countries around the world,how to effectively solve the rapid demise of traditional villages is a social dilemma faced by all countries,which is why ...With the rapid improvement of urbanization and industrialization in countries around the world,how to effectively solve the rapid demise of traditional villages is a social dilemma faced by all countries,which is why a series of relevant protection regulations have been promulgated in different historical periods.However,the formulation of relevant policies is still not scientific,universal,and long-term.In this study,we constructed an evolutionary game model of local governments and residents based on the evolutionary game theory(EGT),which is used to explore the evolutionary stability strategy(ESS)and stability conditions of stakeholders under the premise of mutual influence and restriction.Besides,the study also included the analysis about the impacts of different influence factors on the evolution tendency of the game model.At the same time,numerical simulation examples were used to verify the theoretical results and three crucial conclusions have been drawn.Firstly,the strategic evolution of stakeholders is a dynamic process of continuous adjustment and optimization,and its results and speed show consistent interdependence.Secondly,the decision-making of stakeholders mainly depends on the basic cost,and the high cost of investment is not conducive to the protection of traditional villages.Thirdly,the dynamic evolutionary mechanism composed of different influence factors will have an impact on the direction and speed of decision-making of stakeholders,which provides the basis for them to effectively restrict the decision-making of each other.This study eliminates the weaknesses of existing research approaches and provides scientific and novel ideas for the protection of traditional villages,which can contribute to the formulation and improvement of the relevant laws and regulations.展开更多
The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the ...The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the game.The strategies of each player are updated asynchronously during the game.Two inference methods of the interactions between players are derived with naive mean-field(n MF)approximation and maximum log-likelihood estimation(MLE),respectively.Two methods are tested numerically also for fully connected asymmetric Sherrington-Kirkpatrick models,varying the data length,asymmetric degree,payoff,and system noise(coupling strength).We find that the mean square error of reconstruction for the MLE method is inversely proportional to the data length and typically half(benefit from the extra information of update times)of that by n MF.Both methods are robust to the asymmetric degree but work better for large payoffs.Compared with MLE,n MF is more sensitive to the strength of couplings and prefers weak couplings.展开更多
By using a generalized fitness-dependent Moran process, an evolutionary model for symmetric 2 × 2 games in a well-mixed population with a finite size is investigated. In the model, the individuals' payoff accumu...By using a generalized fitness-dependent Moran process, an evolutionary model for symmetric 2 × 2 games in a well-mixed population with a finite size is investigated. In the model, the individuals' payoff accumulating from games is mapped into fitness using an exponent function. Both selection strength β and mutation rate ε are considered. The process is an ergodic birth-death process. Based on the limit distribution of the process, we give the analysis results for which strategy will be favoured when s is small enough. The results depend on not only the payoff matrix of the game, but also on the population size. Especially, we prove that natural selection favours the strategy which is risk-dominant when the population size is large enough. For arbitrary β and ε values, the 'Hawk-Dove' game and the 'Coordinate' game are used to illustrate our model. We give the evolutionary stable strategy (ESS) of the games and compare the results with those of the replicator dynamics in the infinite population. The results are determined by simulation experiments.展开更多
Evolutionary game dynamics in finite size populations can be described by a fitness-dependent Wright- Fisher process. We consider symmetric 2×2 games in a well-mixed population. In our model, two parameters to de...Evolutionary game dynamics in finite size populations can be described by a fitness-dependent Wright- Fisher process. We consider symmetric 2×2 games in a well-mixed population. In our model, two parameters to describe the level of player's rationality and noise intensity in environment are introduced. In contrast with the fixation probability method that used in a noiseless case, the introducing of the noise intensity parameter makes the process an ergodic Markov process and based on the limit distribution of the process, we can analysis the evolutionary stable strategy (ESS) of the games. We illustrate the effects of the two parameters on the ESS of games using the Prisoner's dilemma games (PDG) and the snowdrift games (SG). We also compare the ESS of our model with that of the replicator dynamics in infinite size populations. The results are determined by simulation experiments.展开更多
Many previous studies have shown that the environment plays an important role for social individuals. In this paper, we integrate the environmental factor, which is defined as the average payoff of all a player's nei...Many previous studies have shown that the environment plays an important role for social individuals. In this paper, we integrate the environmental factor, which is defined as the average payoff of all a player's neighbours, with the standard Fermi updating rule by introducing a tunable parameter, w. It is found that the level of cooperation increases remarkably, and that the cooperators can better resist the invasion of defection with an increase in w. This interesting phenomenon is then explained from a microscopic view. In addition, the universality of this mechanism is also proved with the help of the small-world network and the random regular graph. This work may be helpful in understanding cooperation behaviour in species from unicellular organisms up to human beings.展开更多
Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games(NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic ex...Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games(NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic expression is formulated for the networked evolutionary games with finite memories, based on which the behavior of the corresponding evolutionary game is analyzed. Secondly, under a proper assumption, the existence of Nash equilibrium of the given networked evolutionary games is proved and a free-type strategy sequence is designed for the convergence to the Nash equilibrium. Finally, an illustrative example is worked out to support the obtained new results.展开更多
The relationship between the government and the waste producer is always a representative and realistic issue,especially concerning the venous industry.This article is based on the true relationship between the govern...The relationship between the government and the waste producer is always a representative and realistic issue,especially concerning the venous industry.This article is based on the true relationship between the government and the waste producer,uses the methods from the evolutionary game theory,and analyzes the relationship between the government and the waste producer in detail.展开更多
In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the M...In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the Markov decision framework,a single-task multi-decision evolutionary game model based on multi-agent reinforcement learning is proposed to explore the evolutionary rules in the process of a game.The model can improve the result of a evolutionary game and facilitate the completion of the task.First,based on the multi-agent theory,to solve the existing problems in the original model,a negative feedback tax penalty mechanism is proposed to guide the strategy selection of individuals in the group.In addition,in order to evaluate the evolutionary game results of the group in the model,a calculation method of the group intelligence level is defined.Secondly,the Q-learning algorithm is used to improve the guiding effect of the negative feedback tax penalty mechanism.In the model,the selection strategy of the Q-learning algorithm is improved and a bounded rationality evolutionary game strategy is proposed based on the rule of evolutionary games and the consideration of the bounded rationality of individuals.Finally,simulation results show that the proposed model can effectively guide individuals to choose cooperation strategies which are beneficial to task completion and stability under different negative feedback factor values and different group sizes,so as to improve the group intelligence level.展开更多
In order to protect the interests of electric vehicle users and grid companies with vehicle-to-grid(V2G)technology,a reasonable electric vehicle discharge electricity price is established through the evolutionary game...In order to protect the interests of electric vehicle users and grid companies with vehicle-to-grid(V2G)technology,a reasonable electric vehicle discharge electricity price is established through the evolutionary game model.A game model of power grid companies and electric vehicle users based on the evolutionary game theory is established to balance the revenue of both players in the game.By studying the dynamic evolution process of both sides of the game,the range of discharge price that satisfies the interests of both sides is obtained.The results are compared with those obtained by the static Bayesian game.The results show that the discharge price which can benefit both sides of the game exists in a specific range.According to the setting of the example,the reasonable discharge electricity price is 1.1060 to 1.4811 yuan/(kW·h).Only within this range can the power grid company and electric vehicle users achieve positive interactions.In addition,the evolutionary game model is easier to balance the interests of the two players than the static Bayesian game.展开更多
We study the effects of the planarity and heterogeneity of networks on evolutionary two-player symmetric games by considering four different kinds of networks, including two types of heterogeneous networks: the weight...We study the effects of the planarity and heterogeneity of networks on evolutionary two-player symmetric games by considering four different kinds of networks, including two types of heterogeneous networks: the weighted planar stochastic lattice(a planar scale-free network) and the random uncorrelated scale-free network with the same degree distribution as the weighted planar stochastic lattice; and two types of homogeneous networks: the hexagonal lattice and the random regular network with the same degree k_0= 6 as the hexagonal lattice. Using extensive computer simulations, we found that both the planarity and heterogeneity of the network have a significant influence on the evolution of cooperation, either promotion or inhibition, depending not only on the specific kind of game(the Harmony, Snowdrift, Stag Hunt or Prisoner's Dilemma games), but also on the update rule(the Fermi, replicator or unconditional imitation rules).展开更多
基金the National Natural Science Foun-dation of China(Grant No.71961003).
文摘In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment.
基金Project supported by the Doctoral Foundation Project of Guizhou University(Grant No.(2019)49)the National Natural Science Foundation of China(Grant No.71961003)the Science and Technology Program of Guizhou Province(Grant No.7223)。
文摘In evolutionary games,most studies on finite populations have focused on a single updating mechanism.However,given the differences in individual cognition,individuals may change their strategies according to different updating mechanisms.For this reason,we consider two different aspiration-driven updating mechanisms in structured populations:satisfied-stay unsatisfied shift(SSUS)and satisfied-cooperate unsatisfied defect(SCUD).To simulate the game player’s learning process,this paper improves the particle swarm optimization algorithm,which will be used to simulate the game player’s strategy selection,i.e.,population particle swarm optimization(PPSO)algorithms.We find that in the prisoner’s dilemma,the conditions that SSUS facilitates the evolution of cooperation do not enable cooperation to emerge.In contrast,SCUD conditions that promote the evolution of cooperation enable cooperation to emerge.In addition,the invasion of SCUD individuals helps promote cooperation among SSUS individuals.Simulated by the PPSO algorithm,the theoretical approximation results are found to be consistent with the trend of change in the simulation results.
基金the financial support from the Postdoctoral Science Foundation of China(2022M720131)Spring Sunshine Collaborative Research Project of the Ministry of Education(202201660)+3 种基金Youth Project of Gansu Natural Science Foundation(22JR5RA542)General Project of Gansu Philosophy and Social Science Foundation(2022YB014)National Natural Science Foundation of China(72034003,72243006,and 71874074)Fundamental Research Funds for the Central Universities(2023lzdxjbkyzx008,lzujbky-2021-sp72)。
文摘Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.
基金supported by the National Key R&D Program of China(2023YFE0106800)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX24_0100).
文摘Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,which can be categorized into physics-based models and machine-learning models.Both types of models have their advantages and disadvantages.To obtain a more advanced MLCD prediction method,this study proposes a hybrid architecture,which combines the Evolutionary Game Theory(EGT)based model(considering data efficient and interpretable)and the Machine Learning(ML)based model(considering high prediction accuracy)to model the mandatory lane change decision of multi-style drivers(i.e.EGTML framework).Therefore,EGT is utilized to introduce physical information,which can describe the progressive cooperative interactions between drivers and predict the decision-making of multi-style drivers.The generalization of the EGTML method is further validated using four machine learning models:ANN,RF,LightGBM,and XGBoost.The superiority of EGTML is demonstrated using real-world data(i.e.,Next Generation SIMulation,NGSIM).The results of sensitivity analysis show that the EGTML model outperforms the general ML model,especially when the data is sparse.
基金supported by the National Natural Science Foundation of China(Nos.51977113,62293500,62293501 and 62293505).
文摘Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.
基金supported by the National Key R&D Program of China(2017YFB0902200).
文摘With the increasing proportion of renewable energy in the power market,the demands on government financial subsidies are gradually increasing.Thus,a joint green certificate-carbon emission right-electricity multi-market trading process is proposed to study the market-based strategy for renewable energy.Considering the commodity characteristics of green certificates and carbon emission rights,the dynamic cost models of green certificates and carbon rights are constructed based on the Rubinstein game and ladder pricing models.Furthermore,considering the irrational bidding behavior of energy suppliers in the actual electricity market,an evolutionary game based multi-market bidding optimization model is presented.Subsequently,it is solved using a composite differential evolutionary algorithm.Finally,the case study results reveal that the proposed model can increase profits and the consumption rate of renewable energy and reduce carbon emission.
基金supported by the National Natural Science Foundation of China(61872006)Scientific Research Activities Foundation of Academic and Technical Leaders and Reserve Candidates in Anhui Province(2020H233)+2 种基金Top-notch Discipline(specialty)Talents Foundation in Colleges and Universities of Anhui Province(gxbj2020057)the Startup Foundation for Introducing Talent of NUISTby Institutional Fund Projects from Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia(IFPDP-216-22)。
文摘The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.
基金supported by the National Natural Science Foundation of China(71901217)the Key Primary Research Project of Primary Strengthening Program(2020-JCJQ-ZD-007).
文摘Autonomous cooperation of unmanned swarms is the research focus on“new combat forces”and“disruptive technologies”in military fields.The mechanism design is the fundamental way to realize autonomous cooperation.Facing the realistic requirements of a swarm network dynamic adjustment under the background of high dynamics and strong confrontation and aiming at the optimization of the coordination level,an adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game is designed.This paper analyzes military requirements and proposes the basic framework of autonomous cooperation of unmanned swarms,including the emergence of swarm intelligence,information network construction and collaborative mechanism design.Then,based on the framework,the adaptive dynamic reconfiguration mechanism is discussed in detail from two aspects:topology dynamics and strategy dynamics.Next,the unmanned swarms’community network is designed,and the network characteristics are analyzed.Moreover,the mechanism characteristics are analyzed by numerical simulation,focusing on the impact of key parameters,such as cost,benefit coefficient and adjustment rate on the level of swarm cooperation.Finally,the conclusion is made,which is expected to provide a theoretical reference and decision support for cooperative mode design and combat effectiveness generation of unmanned swarm operations.
基金support from NSFC,China(62036002,62273226)is gratefully acknowledgedsupported by the Fundamental Research Funds for Central Universities,Xidian University,China(JB210414).
文摘Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations.It still remains an open problem to fully understand evolutionary game dynamics on networks except for certain limiting scenarios such as weak selection.Here we study the evolutionary dynamics of spatial games under strong selection where strategy evolution of individuals becomes deterministic in a fashion of winners taking all.We show that the long term behavior of the evolutionary process eventually converges to a particular basin of attraction,which is either a periodic cycle or a single fixed state depending on specific initial conditions and model parameters.In particular,we find that symmetric starting configurations can induce an exceedingly long transient phase encompassing a large number of aesthetic spatial patterns including the prominent kaleidoscopic cooperation.Our finding holds for any population structure and a broad class of finite games beyond the Prisoner’s Dilemma.Our work offers insights into understanding evolutionary dynamics of spatially extended systems ubiquitous in biology and ecology.
文摘Characteristics of knowledge exchanging behavior among individual agents in a knowledge dynamic interaction system are studied by using the game theory. An analytic model of evolutionary game of continuous dynamic knowledge interaction behavior is founded based on the structure of the evolutionary game chain. Possible evolution trends of the model are discussed. Finally, evolutionary stable strategies (ESSs) of knowledge transactions among individual agents in the knowledge network are identified by simulation data. Stable charicteristics of ESS in a continuous knowledge exchanging team help employee to communicate and grasp the dynamic regulation of shared knowledge.
基金funded by the Southwest Minzu University 2021 Graduate Innovative Research Master Key Project(320-022142043).
文摘With the rapid improvement of urbanization and industrialization in countries around the world,how to effectively solve the rapid demise of traditional villages is a social dilemma faced by all countries,which is why a series of relevant protection regulations have been promulgated in different historical periods.However,the formulation of relevant policies is still not scientific,universal,and long-term.In this study,we constructed an evolutionary game model of local governments and residents based on the evolutionary game theory(EGT),which is used to explore the evolutionary stability strategy(ESS)and stability conditions of stakeholders under the premise of mutual influence and restriction.Besides,the study also included the analysis about the impacts of different influence factors on the evolution tendency of the game model.At the same time,numerical simulation examples were used to verify the theoretical results and three crucial conclusions have been drawn.Firstly,the strategic evolution of stakeholders is a dynamic process of continuous adjustment and optimization,and its results and speed show consistent interdependence.Secondly,the decision-making of stakeholders mainly depends on the basic cost,and the high cost of investment is not conducive to the protection of traditional villages.Thirdly,the dynamic evolutionary mechanism composed of different influence factors will have an impact on the direction and speed of decision-making of stakeholders,which provides the basis for them to effectively restrict the decision-making of each other.This study eliminates the weaknesses of existing research approaches and provides scientific and novel ideas for the protection of traditional villages,which can contribute to the formulation and improvement of the relevant laws and regulations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11705079 and 11705279)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY221101 and NY222134)the Science and Technology Innovation Training Program(Grant No.STITP 202210293044Z)。
文摘The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the game.The strategies of each player are updated asynchronously during the game.Two inference methods of the interactions between players are derived with naive mean-field(n MF)approximation and maximum log-likelihood estimation(MLE),respectively.Two methods are tested numerically also for fully connected asymmetric Sherrington-Kirkpatrick models,varying the data length,asymmetric degree,payoff,and system noise(coupling strength).We find that the mean square error of reconstruction for the MLE method is inversely proportional to the data length and typically half(benefit from the extra information of update times)of that by n MF.Both methods are robust to the asymmetric degree but work better for large payoffs.Compared with MLE,n MF is more sensitive to the strength of couplings and prefers weak couplings.
基金supported by the National Natural Science Foundation of China (Grant No. 71071119)the Fundamental Research Funds for the Central Universities
文摘By using a generalized fitness-dependent Moran process, an evolutionary model for symmetric 2 × 2 games in a well-mixed population with a finite size is investigated. In the model, the individuals' payoff accumulating from games is mapped into fitness using an exponent function. Both selection strength β and mutation rate ε are considered. The process is an ergodic birth-death process. Based on the limit distribution of the process, we give the analysis results for which strategy will be favoured when s is small enough. The results depend on not only the payoff matrix of the game, but also on the population size. Especially, we prove that natural selection favours the strategy which is risk-dominant when the population size is large enough. For arbitrary β and ε values, the 'Hawk-Dove' game and the 'Coordinate' game are used to illustrate our model. We give the evolutionary stable strategy (ESS) of the games and compare the results with those of the replicator dynamics in the infinite population. The results are determined by simulation experiments.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 71071119 and 60574071
文摘Evolutionary game dynamics in finite size populations can be described by a fitness-dependent Wright- Fisher process. We consider symmetric 2×2 games in a well-mixed population. In our model, two parameters to describe the level of player's rationality and noise intensity in environment are introduced. In contrast with the fixation probability method that used in a noiseless case, the introducing of the noise intensity parameter makes the process an ergodic Markov process and based on the limit distribution of the process, we can analysis the evolutionary stable strategy (ESS) of the games. We illustrate the effects of the two parameters on the ESS of games using the Prisoner's dilemma games (PDG) and the snowdrift games (SG). We also compare the ESS of our model with that of the replicator dynamics in infinite size populations. The results are determined by simulation experiments.
基金Project supported by the CAS/USTC Special Grant for Postgraduate Research,Innovation,and Practice
文摘Many previous studies have shown that the environment plays an important role for social individuals. In this paper, we integrate the environmental factor, which is defined as the average payoff of all a player's neighbours, with the standard Fermi updating rule by introducing a tunable parameter, w. It is found that the level of cooperation increases remarkably, and that the cooperators can better resist the invasion of defection with an increase in w. This interesting phenomenon is then explained from a microscopic view. In addition, the universality of this mechanism is also proved with the help of the small-world network and the random regular graph. This work may be helpful in understanding cooperation behaviour in species from unicellular organisms up to human beings.
基金supported by the National Natural Science Foundation of China(61503225)the Natural Science Foundation of Shandong Province(ZR2015FQ003,ZR201709260273)
文摘Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games(NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic expression is formulated for the networked evolutionary games with finite memories, based on which the behavior of the corresponding evolutionary game is analyzed. Secondly, under a proper assumption, the existence of Nash equilibrium of the given networked evolutionary games is proved and a free-type strategy sequence is designed for the convergence to the Nash equilibrium. Finally, an illustrative example is worked out to support the obtained new results.
基金supported by the Innovation Foundation of Shanghai Municipal Education Commission (Grant No.09YS47)
文摘The relationship between the government and the waste producer is always a representative and realistic issue,especially concerning the venous industry.This article is based on the true relationship between the government and the waste producer,uses the methods from the evolutionary game theory,and analyzes the relationship between the government and the waste producer in detail.
基金supported by the National Key R&D Program of China(2017YFB1400105).
文摘In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the Markov decision framework,a single-task multi-decision evolutionary game model based on multi-agent reinforcement learning is proposed to explore the evolutionary rules in the process of a game.The model can improve the result of a evolutionary game and facilitate the completion of the task.First,based on the multi-agent theory,to solve the existing problems in the original model,a negative feedback tax penalty mechanism is proposed to guide the strategy selection of individuals in the group.In addition,in order to evaluate the evolutionary game results of the group in the model,a calculation method of the group intelligence level is defined.Secondly,the Q-learning algorithm is used to improve the guiding effect of the negative feedback tax penalty mechanism.In the model,the selection strategy of the Q-learning algorithm is improved and a bounded rationality evolutionary game strategy is proposed based on the rule of evolutionary games and the consideration of the bounded rationality of individuals.Finally,simulation results show that the proposed model can effectively guide individuals to choose cooperation strategies which are beneficial to task completion and stability under different negative feedback factor values and different group sizes,so as to improve the group intelligence level.
基金The National Natural Science Foundation of China(No.51577028).
文摘In order to protect the interests of electric vehicle users and grid companies with vehicle-to-grid(V2G)technology,a reasonable electric vehicle discharge electricity price is established through the evolutionary game model.A game model of power grid companies and electric vehicle users based on the evolutionary game theory is established to balance the revenue of both players in the game.By studying the dynamic evolution process of both sides of the game,the range of discharge price that satisfies the interests of both sides is obtained.The results are compared with those obtained by the static Bayesian game.The results show that the discharge price which can benefit both sides of the game exists in a specific range.According to the setting of the example,the reasonable discharge electricity price is 1.1060 to 1.4811 yuan/(kW·h).Only within this range can the power grid company and electric vehicle users achieve positive interactions.In addition,the evolutionary game model is easier to balance the interests of the two players than the static Bayesian game.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575072 and 11475074)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2017-172)
文摘We study the effects of the planarity and heterogeneity of networks on evolutionary two-player symmetric games by considering four different kinds of networks, including two types of heterogeneous networks: the weighted planar stochastic lattice(a planar scale-free network) and the random uncorrelated scale-free network with the same degree distribution as the weighted planar stochastic lattice; and two types of homogeneous networks: the hexagonal lattice and the random regular network with the same degree k_0= 6 as the hexagonal lattice. Using extensive computer simulations, we found that both the planarity and heterogeneity of the network have a significant influence on the evolution of cooperation, either promotion or inhibition, depending not only on the specific kind of game(the Harmony, Snowdrift, Stag Hunt or Prisoner's Dilemma games), but also on the update rule(the Fermi, replicator or unconditional imitation rules).