Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com-...Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions.展开更多
Based on the mechanisms of immunodominance and clonal selection theory, we propose a new multiobjective optimization algorithm, immune dominance clonal multiobjective algorithm (IDCMA). IDCMA is unique in that its f...Based on the mechanisms of immunodominance and clonal selection theory, we propose a new multiobjective optimization algorithm, immune dominance clonal multiobjective algorithm (IDCMA). IDCMA is unique in that its fitness values of current dominated individuals are assigned as the values of a custom distance measure, termed as Ab-Ab affinity, between the dominated individuals and one of the nondominated individuals found so far. According to the values of Ab-Ab affinity, all dominated individuals (antibodies) are divided into two kinds, subdominant antibodies and cryptic antibodies. Moreover, local search only applies to the subdominant antibodies, while the cryptic antibodies are redundant and have no function during local search, but they can become subdominant (active) antibodies during the subsequent evolution. Furthermore, a new immune operation, clonal proliferation is provided to enhance local search. Using the clonal proliferation operation, IDCMA reproduces individuals and selects their improved maturated progenies after local search, so single individuals can exploit their surrounding space effectively and the newcomers yield a broader exploration of the search space. The performance comparison of IDCMA with MISA, NSGA-Ⅱ, SPEA, PAES, NSGA, VEGA, NPGA, and HLGA in solving six well-known multiobjective function optimization problems and nine multiobjective 0/1 knapsack problems shows that IDCMA has a good performance in converging to approximate Pareto-optimal fronts with a good distribution.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51675098)
文摘Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions.
基金the National Natural Science Foundation of China(Grant Nos.60703107 and 60703108)the National High Technology Research and Development Program(863 Program) of China(Grant No.2006AA01Z107)+1 种基金the National Basic Research Program(973 Program) of China(Grant No.2006CB705700)the Program for Cheung Kong Scholars and Innovative Research Team in University(Grant No.IRT0645)
文摘Based on the mechanisms of immunodominance and clonal selection theory, we propose a new multiobjective optimization algorithm, immune dominance clonal multiobjective algorithm (IDCMA). IDCMA is unique in that its fitness values of current dominated individuals are assigned as the values of a custom distance measure, termed as Ab-Ab affinity, between the dominated individuals and one of the nondominated individuals found so far. According to the values of Ab-Ab affinity, all dominated individuals (antibodies) are divided into two kinds, subdominant antibodies and cryptic antibodies. Moreover, local search only applies to the subdominant antibodies, while the cryptic antibodies are redundant and have no function during local search, but they can become subdominant (active) antibodies during the subsequent evolution. Furthermore, a new immune operation, clonal proliferation is provided to enhance local search. Using the clonal proliferation operation, IDCMA reproduces individuals and selects their improved maturated progenies after local search, so single individuals can exploit their surrounding space effectively and the newcomers yield a broader exploration of the search space. The performance comparison of IDCMA with MISA, NSGA-Ⅱ, SPEA, PAES, NSGA, VEGA, NPGA, and HLGA in solving six well-known multiobjective function optimization problems and nine multiobjective 0/1 knapsack problems shows that IDCMA has a good performance in converging to approximate Pareto-optimal fronts with a good distribution.