期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ACP-based social computing and parallel intelligence: Societies 5.0 and beyond 被引量:21
1
作者 XiaoWang Lingxi Li +2 位作者 Yong Yuan Peijun Ye Fei-Yue Wang 《CAAI Transactions on Intelligence Technology》 2016年第4期377-393,共17页
Social computing, as the technical foundation of future computational smart societies, has the potential to improve the effectiveness of opensource big data usage, systematically integrate a variety of elements includ... Social computing, as the technical foundation of future computational smart societies, has the potential to improve the effectiveness of opensource big data usage, systematically integrate a variety of elements including time, human, resources, scenarios, and organizations in the current cyber-physical-social world, and establish a novel social structure with fair information, equal rights, and a flat configuration. Meanwhile, considering the big modeling gap between the model world and the physical world, the concept of parallel intelligence is introduced. With the help of software-defined everything, parallel intelligence bridges the big modeling gap by means of constructing artificial systems where computational experiments can be implemented to verify social policies, economic strategies, and even military operations. Artificial systems play the role of "social laboratories" in which decisions are computed before they are executed in our physical society. Afterwards, decisions with the expected outputs are executed in parallel in both the artificial and physical systems to interactively sense, compute, evaluate and adjust system behaviors in real-time, leading system behaviors in the physical system converging to those proven to be optimal in the artificial ones. Thus, the smart guidance and management for our society can be achieved. 展开更多
关键词 Social computing Societies 5.0 Parallel intelligence Knowledge automation Cyber-physical-social system Artificial societies Computational ex-periments Parallel execution
下载PDF
Vegetation field spectrum denoising via lifting wavelet transform
2
作者 周广柱 杨锋杰 王翠珍 《Journal of Coal Science & Engineering(China)》 2008年第1期131-135,共5页
Field spectrum pretreatment experiments were carried out, and denoising numerical experiment via lifting wavelet transform (LWT) was designed, and several famous test signals including blocks, bumps, heavy sine and ... Field spectrum pretreatment experiments were carried out, and denoising numerical experiment via lifting wavelet transform (LWT) was designed, and several famous test signals including blocks, bumps, heavy sine and doppler were processed via Lw'r in these experiment. And the field spectrum was processed via Lw'r. Experiments proved that SNRG-tO-SNRN curves have similar feature and they all have a peak. And SNRG of almost all employed wavelets have higher value with SNRN between 0 and 20 dB. When signal is at high SNR, the SNRG is very little, and the MSED of denoised signal became little by little. LWT is more suite to denoise the low SNR or heavy noise contaminated signals. Bior4.4 have wider SNRN interval for denoising comparing with other five wavelets, includ- ing haar, db6, sym6, bior2.2 and bior3.3. Original field spectrum is processed by 3 stage liftings based on bior4.4 to denoise the trivial noise-contaminated regions. On processing the water band signal, logarithm transform is firstly taken. And then the spectrum is denoised via LWT based on bior4.4. The results show that an excellent denoised spectrum can be get, especially between 350 nm and 1 800 nm, and between 1 960 nm to 2 500 nm. While there is still a bump around 1 900 nm, this maybe due to the spectrum machine's limited precision. 展开更多
关键词 vegetation field spectrum lifting wavelet transform DENOISE numerical ex-periment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部