This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a suffi...This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a sufficient condition for the exact controllability of the rational expectations model.In particular,we derive a sufficient Gramian matrix condition and a rank condition for the delay-free case.The key is the solvability of the backward stochastic difference equations with input delay which is derived from the forward and backward stochastic system.展开更多
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts servi...This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution.展开更多
Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ...Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.展开更多
基金supported by the National Natural Science Foundation of China under Grants 61821004,62250056,62350710214,U23A20325,62350055the Natural Science Foundation of Shandong Province,China(ZR2021ZD14,ZR2021JQ24)+2 种基金High-level Talent Team Project of Qingdao West Coast New Area,China(RCTD-JC-2019-05)Key Research and Development Program of Shandong Province,China(2020CXGC01208)Science and Technology Project of Qingdao West Coast New Area,China(2019-32,2020-20,2020-1-4).
文摘This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a sufficient condition for the exact controllability of the rational expectations model.In particular,we derive a sufficient Gramian matrix condition and a rank condition for the delay-free case.The key is the solvability of the backward stochastic difference equations with input delay which is derived from the forward and backward stochastic system.
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
文摘This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution.
文摘Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.