In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney-Kawahara-L...In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney-Kawahara-Lin equation and derive its many explicit and exact solutions which are all new solutions.展开更多
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for th...With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.展开更多
Using the methods of dynamical systems for the (n + 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions are obtained. F...Using the methods of dynamical systems for the (n + 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions are obtained. For the double sine-Gordon equation, the exact explicit parametric representations of the bounded traveling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.展开更多
By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple...By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple manner.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.展开更多
Using the methods of dynamical systems for two generalized Boussinesq systems, the existence of all possible solitary wave solutions and many uncountably infinite periodic wave solutions is obtained. Exact explicit pa...Using the methods of dynamical systems for two generalized Boussinesq systems, the existence of all possible solitary wave solutions and many uncountably infinite periodic wave solutions is obtained. Exact explicit parametric representations of the travelling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.展开更多
For the Davey-Stewartson system, the exact dark solitary wave solutions, solitary wave solutions, kink wave solution and periodic wave solutions are studied. To guarantee the existence of the above solutions, all para...For the Davey-Stewartson system, the exact dark solitary wave solutions, solitary wave solutions, kink wave solution and periodic wave solutions are studied. To guarantee the existence of the above solutions, all parameter conditions are determined. The persistence of dark solitary wave solutions to the perturbed Davey-Stewartson system is proved.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney-Kawahara-Lin equation and derive its many explicit and exact solutions which are all new solutions.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
基金Natural Science Foundation of Gansu Province of China
文摘With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 11671179)the Natural Science Foundation of Yunnan Province (Grant No. 2005A0092M).
文摘Using the methods of dynamical systems for the (n + 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions are obtained. For the double sine-Gordon equation, the exact explicit parametric representations of the bounded traveling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.
基金supported by the National Natural Science Foundation of China (Grant No 10672053) the Natural Science Foundation of Hunan Province of China (Grant No 05JJ30007)the Scientific Research Fund of Hunan Institute of Science and Technology of China (Grant No 2007Y047)
文摘By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple manner.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10671179, 10772158)
文摘Using the methods of dynamical systems for two generalized Boussinesq systems, the existence of all possible solitary wave solutions and many uncountably infinite periodic wave solutions is obtained. Exact explicit parametric representations of the travelling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.
基金supported by the National Natural Science Foundation of China(10831003)
文摘For the Davey-Stewartson system, the exact dark solitary wave solutions, solitary wave solutions, kink wave solution and periodic wave solutions are studied. To guarantee the existence of the above solutions, all parameter conditions are determined. The persistence of dark solitary wave solutions to the perturbed Davey-Stewartson system is proved.