Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta...Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.展开更多
Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research w...Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2. 3 min depth, inplane dimensions of 5 min width by 5 m in lengt...In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2. 3 min depth, inplane dimensions of 5 min width by 5 m in length, and an archaeological column in the middle was excavated by means of a top-down excavation technique. To investigate the stability performance of the modeled test square and the associated effect on the adjacent area, a real-time comprehensive instrumentation program was conducted during the excavation. Field observations included ground settlements, lateral displacement, pore pressure and underground water level. Monitoring data indicates that the ground settlement induced by dewatering and unloading action basically decreases with the increase of the distance away from the pit edge, and the lateral displacements at four sides showa nonlinear variation along the depth. The maximum value is far below the acceptable value regulated by the related standard,which validates the stability of the modeled test square during excavation. Variations of pore pressure and water level suggest that long-term stability should be paid more attention due to the slowconsolidation of soft soil. Meanwhile, it is proved that the step shape of the wall can resist lateral displacement more effectively than the vertical shape of wall. This case study provides insights into the real archaeological excavation in Hangzhou, in particular Liangzhu prehistoric earthen sites.展开更多
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ...Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.展开更多
Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-ex...Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method (FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory (URL) Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks (DFNs) of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation.展开更多
Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out...Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.展开更多
In this paper numerical analysis of underground structures, taking account the transverse isotropy system of rocks, was done using CAST 3M code by varying the shape of excavation and the coefficient of earth pressure ...In this paper numerical analysis of underground structures, taking account the transverse isotropy system of rocks, was done using CAST 3M code by varying the shape of excavation and the coefficient of earth pressure k. Numerical results reveal that the anisotropy behavior, the shape of hole and the coefficient of earth pressure k have significant influence to the mining induced stress field and rock deformations which directly control the stability of underground excavation design. The magnitude of horizontal stress obtained for the horse shoe shape excavation(25.2 MPa for k = 1; 52.7 MPa for k = 2)is lower than the magnitude obtained for circular hole(26.4 MPa for k = 1; 59.5 MPa for k = 2).Therefore, we have concluded that the horse shoe shape offers the best stability and the best design for engineer. The anisotropy system presented by rock mass can also influence the redistribution of stresses around hole opened. Numerical results have revealed that the magnitude of redistribution of horizontal stresses obtained for transverse isotropic rock(12.1 MPa for k = 0.5; 25.2 MPa for k = 1 and52.7 MPa for k = 2) is less than those obtained in the case of isotropic rock(27.6 MPa for k = 1;48.6 MPa for k = 2 and 90.81 MPa for k = 2). The more the rock has the anisotropic behavior, the more the mass of rock around the tunnel is stable.展开更多
Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method...Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from-16.6 to-43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection.展开更多
The dilation angle is the most commonly used parameter to study nonlinear post-peak dilatancy(PPD)behavior and simulate surrounding rock deformation;however,simplified or constant dilatancy models are often used in nu...The dilation angle is the most commonly used parameter to study nonlinear post-peak dilatancy(PPD)behavior and simulate surrounding rock deformation;however,simplified or constant dilatancy models are often used in numerical calculations owing to their simple mathematical forms.This study developed a PPD model for rocks(rock masses)based on the Alejanoe-Alonso(A-A)dilatancy model.The developed model comprehensively reflects the influences of confining pressure(σ_(3))and plastic shear strain(γ^(p)),with the advantages of a simple mathematical form,while requiring fewer parameters and demonstrating a clear physical significance.The overall fitting accuracy of the PPD model for 11 different rocks was found to be higher than that of the A-A model,particularly for Witwatersrand quartzite and jointed granite.The applicability and reliability of the PPD model to jointed granites and different scaled Moura coals were also investigated,and the model was found to be more suitable for the soft and large-scale rocks,e.g.deep rock mass.The PPD model was also successfully applied in studying the mechanical response of a circular tunnel excavated in strain-softening rock mass,and the developed semi-analytical solution was compared and verified with existing analytical solutions.The sensitivities of the rock dilatancy to γ^(p) and σ_(3) showed significant spatial variabilities along the radial direction of the surrounding rock,and the dilation angle did not exhibit a monotonical increasing or decreasing law from the elasticeplastic boundary to the tunnel wall,thereby presenting the σ3-or γ^(p)-dominated differential effects of rock dilatancy.Tunnel deformation parabolically or exponentially increased with increasing in situ stress(buried depth).The developed PPD model is promising to conduct refined numerical and analytical analyses for deep tunneling,which produces extensive plastic deformation and exhibits significant nonlinear post-peak behavior.展开更多
AIM: To investigate the clinical and optical coherence tomography(OCT) features of focal choroidal excavation(FCE) complicated with choroidal neovascularization(CNV) in young and middle aged patients. METHODS: We perf...AIM: To investigate the clinical and optical coherence tomography(OCT) features of focal choroidal excavation(FCE) complicated with choroidal neovascularization(CNV) in young and middle aged patients. METHODS: We performed a retrospective review of 26 patients with FCE accompanied by CNV. All patients underwent a complete ophthalmic examination. We analyzed the clinical characteristics of patients, focusing on the spectral-domain OCT features. All patients received intravitreal injection of anti-vascular endothelial growth factor(anti-VEGF) agents. And we assessed the changes of central retinal thickness and best-corrected visual acuity(BCVA) after anti-VEGF therapy. RESULTS: The mean age of 26 patients was 35.5±7.3 y(range, 21-48 y). Of the 26 FCE lesions, 11 were located subfoveal, 6 were parafoveal, and 9 were extrafoveal. The mean FCE depth was 129.8±50.3 μm, and the mean width was 901.3±306.0 μm. The FCE depth was correlated positively with the width, but not correlated with age or refractive error. CNV was located within the excavation(19 eyes) or adjacent to the excavation(7 eyes). After anti-VEGF therapy, the central retinal thickness was significantly reduced and the BCVA was significantly improved. In the absorption process of subretinal fluid, we found that the fluid in the excavations needed to be absorbed at the last. A small amount of residual fluid could still be seen in a few deep excavations even after a longterm follow-up.CONCLUSION: FCE may be an important reason to cause CNV. Especially in young patients with idiopathic CNV, we should pay attention to the use of OCT to check the presence of FCE. Anti-VEGF therapy is generally effective for CNV associated with FCE.展开更多
AIM: To describe the clinical and imaging characteristics associated with focal choroidal excavation(FCE), analyze the possible complication, and interpret its probable etiopathogenesis.METHODS: Retrospective descript...AIM: To describe the clinical and imaging characteristics associated with focal choroidal excavation(FCE), analyze the possible complication, and interpret its probable etiopathogenesis.METHODS: Retrospective descriptive case series of 37 eyes of 32 patients with FCE. Findings of spectral-domain optical coherence tomography(SD-OCT),fluorescein angiography, indocyanine green angiography,and clinical features were analyzed. RESULTS: All patients were Chinese. Five patients(15.6%) were bilaterally involved. Patients’ ages ranged from 7 to 66 y. Refractive error ranged between +2.0 D and 11.0 D. Mean best-corrected visual acuity was 0.6(range, 0.1 to 1.2). Fundus examinations exhibited mild-moderate localized pigmentary disturbances in the corresponding area of 17 eyes. Fluorescein angiography performed in 18 patients showed varying degrees of hyperfluorescence and hypofluorescence related to a range of retinal pigment epithelium(RPE) alterations.Indocyanine green angiography performed in 7 patients showed hypofluorescence at the excavation. SD-OCT demonstrated choroidal excavation in all 37 eyes.Twenty-nine eyes showed a single lesion of FCE, and three eyes showed 2-3 separated lesions. Fifteen eyes showed separation between the photoreceptor tips andRPE consistent with nonconforming FCE. Central serous chorioretinopathy(CSC, n =1) and choroidal neovascularization(CNV, n =1) developed during follow-up.CONCLUSION: FCE could be interpreted as congenital focal choroidal dysplasia involving the RPE,choriocapillaris, and photoreceptor associated with the faulty anatomy. The abnormal anatomy of FCE was similar to anatomy at risk of CSC and CNV.展开更多
To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection syst...To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection system which was applied to comprehen- sive excavation face was developed.To set a wind dam in jet stream box,achieve the function of multi-stage and multiple-level regulation,lots of experimentation was carried out to obtain higher jet stream velocity with the minimum loss of energy.Experiments show that the slit width in the exports of wind screen dust-collection system should be 10 to 15 mm.For the general excavation roadway,after wind attenuation,the velocity can be greater than 3 m/s at the roof which meets the requirements of respirable dust control.展开更多
The unloading effect of the excavation of deep roadways has been considerably studied, but most research methods have been limited to numerical simulations and field measurements. Only a few have adopted experimental ...The unloading effect of the excavation of deep roadways has been considerably studied, but most research methods have been limited to numerical simulations and field measurements. Only a few have adopted experimental methods for similar simulations. On the basis of the theory of mechanics,the testing system is designed considering initial geostress and dynamic unloading. The system includes an impact unloading gear and in-situ stress loading equipment, and a designed three-link structure and the impact hammer can effectively realize the dynamic excavation of roadways.Meanwhile, a cyclic excavation similar simulation experiment on a deep roadway is conducted in a laboratory. The testing system and the relevant monitoring facilities are utilized, and the unloading effect inside the surrounding rock under the cyclic dynamic excavation is studied. Results show that the cyclic dynamic excavation causes significant unloading only in the nearby rock mass, and the unloading indicators show nonlinear changes.Moreover, when the lateral pressure coefficient is 1.2,the damage is concentrated on both roadsides due to the excavation unloading. Meanwhile, the damage gradually decays as the span increases.展开更多
The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper.A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted...The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper.A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth,acceleration amplitude and wall stiffness.Numerical analyses using FLAC 2D were also performed considering one level of bracing.The strut forces,lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results.The study showed that in a post-seismic condition,when other factors were constant,lateral displacement,bending moment,strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration.The study also showed that as wall stiffness decreased,the lateral displacement of the wall and ground surface displacement increased,but the bending moment of the wall and strut forces decreased.The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude,but did not change significantly with wall stiffness.Strut force was the least affected parameter when compared with others under a seismic condition.展开更多
Based on cutting principle and technology development of vertical blasthole cutby stage and deck in vertical shaft excavation, combined with the merits of middle spacecharging and toe space charging, the reinforced cu...Based on cutting principle and technology development of vertical blasthole cutby stage and deck in vertical shaft excavation, combined with the merits of middle spacecharging and toe space charging, the reinforced cutting effect of central large-diameterblasthole and the method of cutting blast by stage and deck toe space charging for thevertical large-diameter blastholes was put forward and analyzed theoretically.This new cutblasting method is provided with the advantages of high blasthole using ratio, big cavitybulk, low rate of chunk, even lumpiness, and relatively high energy using ratio.The parameterchoices and practical effects of this cutting method were discussed after in situexperiment.It shows that the decked delay time of 75~100 ms is applicable.展开更多
The Tangba high slope is mainly composed of coarse soils and supplies core wall materials for the construction of the Changheba dam. Since the filling intensity of the Changheba dam is high, the Tangba high slope suff...The Tangba high slope is mainly composed of coarse soils and supplies core wall materials for the construction of the Changheba dam. Since the filling intensity of the Changheba dam is high, the Tangba high slope suffers from a high-intensity excavation process, and reinforcement measures are usually not implemented immediately. Moreover, the distribution of useful materials is uneven and insufficient, and the mixing of different soil materials is necessary; thus, multiple simultaneous excavations and secondary excavation are inevitable. In the construction period from 2012 to 2016, large deformations occurred in this area, and one of the largest monitored horizontal deformations whose direction points to the opposite side of the valley even reached more than 8000 mm. According to field investigation, site monitoring and theoretical analysis, the large deformation in the Tangba high slope can be divided into two phases. In the first phase, the excavation construction breaks the original stress equilibrium state; in the second phase, the precipitation infiltration accelerates the deformation. Thus, the excavation construction and precipitation infiltration are the two major factors promoting the deformation, and the high-intensity and complex excavation process is the fundamental cause. Notably, rate of slope deformation significantly accelerated in rainy seasons due to precipitation infiltration; the rate also accelerated in early 2016 due to the high-intensity, complex excavation process. Comprehensively considering the above factors, timely and effective reinforcement measures are essential.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.
基金the Research Fund of National Natural Science Foundation of China(NSFC)(Grant Nos.42477142 and 42277154)the Project of Slope Safety Control and Disaster Prevention Technology Innovation team of“Youth Innovation Talent Introduction and Education Plan”of Shandong Colleges and Universities(Grant No.Lu Jiao Ke Han[2021]No.51)。
文摘Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.
基金The National Natural Science Foundation of China(No.51578272)the National Key Technology R&D Program of China during the Twelfth Five-Year Plan Period(No.2013BAK08B11)
文摘In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2. 3 min depth, inplane dimensions of 5 min width by 5 m in length, and an archaeological column in the middle was excavated by means of a top-down excavation technique. To investigate the stability performance of the modeled test square and the associated effect on the adjacent area, a real-time comprehensive instrumentation program was conducted during the excavation. Field observations included ground settlements, lateral displacement, pore pressure and underground water level. Monitoring data indicates that the ground settlement induced by dewatering and unloading action basically decreases with the increase of the distance away from the pit edge, and the lateral displacements at four sides showa nonlinear variation along the depth. The maximum value is far below the acceptable value regulated by the related standard,which validates the stability of the modeled test square during excavation. Variations of pore pressure and water level suggest that long-term stability should be paid more attention due to the slowconsolidation of soft soil. Meanwhile, it is proved that the step shape of the wall can resist lateral displacement more effectively than the vertical shape of wall. This case study provides insights into the real archaeological excavation in Hangzhou, in particular Liangzhu prehistoric earthen sites.
基金the National Natural Science Foundation of China(Grant Nos. 51278423 and 51478395)for its financial support
文摘Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.
基金the Natural Sciences and Engineering Research Council of Canadathe Ministry of National Defensethe RMC Green Team for providing the funding and the resources
文摘Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method (FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory (URL) Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks (DFNs) of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation.
基金Project (50490272) supported by the National Natural Science Foundation of China project(NCET-05-0687) supportedby Programfor New Century Excellent Talents project (040109) supported bythe Doctor Degree Paper Innovation Engineering of CentralSouth University
文摘Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.
文摘In this paper numerical analysis of underground structures, taking account the transverse isotropy system of rocks, was done using CAST 3M code by varying the shape of excavation and the coefficient of earth pressure k. Numerical results reveal that the anisotropy behavior, the shape of hole and the coefficient of earth pressure k have significant influence to the mining induced stress field and rock deformations which directly control the stability of underground excavation design. The magnitude of horizontal stress obtained for the horse shoe shape excavation(25.2 MPa for k = 1; 52.7 MPa for k = 2)is lower than the magnitude obtained for circular hole(26.4 MPa for k = 1; 59.5 MPa for k = 2).Therefore, we have concluded that the horse shoe shape offers the best stability and the best design for engineer. The anisotropy system presented by rock mass can also influence the redistribution of stresses around hole opened. Numerical results have revealed that the magnitude of redistribution of horizontal stresses obtained for transverse isotropic rock(12.1 MPa for k = 0.5; 25.2 MPa for k = 1 and52.7 MPa for k = 2) is less than those obtained in the case of isotropic rock(27.6 MPa for k = 1;48.6 MPa for k = 2 and 90.81 MPa for k = 2). The more the rock has the anisotropic behavior, the more the mass of rock around the tunnel is stable.
基金Projects(51208071,51108312) supported by the National Natural Science Foundation of China
文摘Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from-16.6 to-43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection.
基金funded by a Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(Grant No.41827807)the Study on Intelligent Technology for Tunnels Construction of Sichuan-Tibet Railway(Grant No.19-21-1).
文摘The dilation angle is the most commonly used parameter to study nonlinear post-peak dilatancy(PPD)behavior and simulate surrounding rock deformation;however,simplified or constant dilatancy models are often used in numerical calculations owing to their simple mathematical forms.This study developed a PPD model for rocks(rock masses)based on the Alejanoe-Alonso(A-A)dilatancy model.The developed model comprehensively reflects the influences of confining pressure(σ_(3))and plastic shear strain(γ^(p)),with the advantages of a simple mathematical form,while requiring fewer parameters and demonstrating a clear physical significance.The overall fitting accuracy of the PPD model for 11 different rocks was found to be higher than that of the A-A model,particularly for Witwatersrand quartzite and jointed granite.The applicability and reliability of the PPD model to jointed granites and different scaled Moura coals were also investigated,and the model was found to be more suitable for the soft and large-scale rocks,e.g.deep rock mass.The PPD model was also successfully applied in studying the mechanical response of a circular tunnel excavated in strain-softening rock mass,and the developed semi-analytical solution was compared and verified with existing analytical solutions.The sensitivities of the rock dilatancy to γ^(p) and σ_(3) showed significant spatial variabilities along the radial direction of the surrounding rock,and the dilation angle did not exhibit a monotonical increasing or decreasing law from the elasticeplastic boundary to the tunnel wall,thereby presenting the σ3-or γ^(p)-dominated differential effects of rock dilatancy.Tunnel deformation parabolically or exponentially increased with increasing in situ stress(buried depth).The developed PPD model is promising to conduct refined numerical and analytical analyses for deep tunneling,which produces extensive plastic deformation and exhibits significant nonlinear post-peak behavior.
基金Supported by the National Natural Science Foundation for Young Scholar of China(No.81600739)the Shanghai Hospital Development Center(No.SHDC12016116)the Science and Technology Commission of Shanghai Municipality(No.16411953700)
文摘AIM: To investigate the clinical and optical coherence tomography(OCT) features of focal choroidal excavation(FCE) complicated with choroidal neovascularization(CNV) in young and middle aged patients. METHODS: We performed a retrospective review of 26 patients with FCE accompanied by CNV. All patients underwent a complete ophthalmic examination. We analyzed the clinical characteristics of patients, focusing on the spectral-domain OCT features. All patients received intravitreal injection of anti-vascular endothelial growth factor(anti-VEGF) agents. And we assessed the changes of central retinal thickness and best-corrected visual acuity(BCVA) after anti-VEGF therapy. RESULTS: The mean age of 26 patients was 35.5±7.3 y(range, 21-48 y). Of the 26 FCE lesions, 11 were located subfoveal, 6 were parafoveal, and 9 were extrafoveal. The mean FCE depth was 129.8±50.3 μm, and the mean width was 901.3±306.0 μm. The FCE depth was correlated positively with the width, but not correlated with age or refractive error. CNV was located within the excavation(19 eyes) or adjacent to the excavation(7 eyes). After anti-VEGF therapy, the central retinal thickness was significantly reduced and the BCVA was significantly improved. In the absorption process of subretinal fluid, we found that the fluid in the excavations needed to be absorbed at the last. A small amount of residual fluid could still be seen in a few deep excavations even after a longterm follow-up.CONCLUSION: FCE may be an important reason to cause CNV. Especially in young patients with idiopathic CNV, we should pay attention to the use of OCT to check the presence of FCE. Anti-VEGF therapy is generally effective for CNV associated with FCE.
基金Supported by the Natural Science Foundation Grant of Zhejiang Province, China (No. LY12H12007)
文摘AIM: To describe the clinical and imaging characteristics associated with focal choroidal excavation(FCE), analyze the possible complication, and interpret its probable etiopathogenesis.METHODS: Retrospective descriptive case series of 37 eyes of 32 patients with FCE. Findings of spectral-domain optical coherence tomography(SD-OCT),fluorescein angiography, indocyanine green angiography,and clinical features were analyzed. RESULTS: All patients were Chinese. Five patients(15.6%) were bilaterally involved. Patients’ ages ranged from 7 to 66 y. Refractive error ranged between +2.0 D and 11.0 D. Mean best-corrected visual acuity was 0.6(range, 0.1 to 1.2). Fundus examinations exhibited mild-moderate localized pigmentary disturbances in the corresponding area of 17 eyes. Fluorescein angiography performed in 18 patients showed varying degrees of hyperfluorescence and hypofluorescence related to a range of retinal pigment epithelium(RPE) alterations.Indocyanine green angiography performed in 7 patients showed hypofluorescence at the excavation. SD-OCT demonstrated choroidal excavation in all 37 eyes.Twenty-nine eyes showed a single lesion of FCE, and three eyes showed 2-3 separated lesions. Fifteen eyes showed separation between the photoreceptor tips andRPE consistent with nonconforming FCE. Central serous chorioretinopathy(CSC, n =1) and choroidal neovascularization(CNV, n =1) developed during follow-up.CONCLUSION: FCE could be interpreted as congenital focal choroidal dysplasia involving the RPE,choriocapillaris, and photoreceptor associated with the faulty anatomy. The abnormal anatomy of FCE was similar to anatomy at risk of CSC and CNV.
基金the National Natural Science Foundation of China(f010206)
文摘To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection system which was applied to comprehen- sive excavation face was developed.To set a wind dam in jet stream box,achieve the function of multi-stage and multiple-level regulation,lots of experimentation was carried out to obtain higher jet stream velocity with the minimum loss of energy.Experiments show that the slit width in the exports of wind screen dust-collection system should be 10 to 15 mm.For the general excavation roadway,after wind attenuation,the velocity can be greater than 3 m/s at the roof which meets the requirements of respirable dust control.
基金funded by the National Key R&D Program of China(Grant Nos.2017YFC0603000)the National Natural Foundation of China(Grant Nos.51404011,51674008,51774012,51474006,and 51574006)+2 种基金the Key Task Project in Scientific and Technological Research in AnhuiProvince(Grant No.1604a0802107)the Outstanding Top-notch Talent Cultivation Project in Anhui Province(No.gxbj ZD2016051)the Anhui provincial academic and technical leaders and reserve candidates for academic research activities(No.2015H036)
文摘The unloading effect of the excavation of deep roadways has been considerably studied, but most research methods have been limited to numerical simulations and field measurements. Only a few have adopted experimental methods for similar simulations. On the basis of the theory of mechanics,the testing system is designed considering initial geostress and dynamic unloading. The system includes an impact unloading gear and in-situ stress loading equipment, and a designed three-link structure and the impact hammer can effectively realize the dynamic excavation of roadways.Meanwhile, a cyclic excavation similar simulation experiment on a deep roadway is conducted in a laboratory. The testing system and the relevant monitoring facilities are utilized, and the unloading effect inside the surrounding rock under the cyclic dynamic excavation is studied. Results show that the cyclic dynamic excavation causes significant unloading only in the nearby rock mass, and the unloading indicators show nonlinear changes.Moreover, when the lateral pressure coefficient is 1.2,the damage is concentrated on both roadsides due to the excavation unloading. Meanwhile, the damage gradually decays as the span increases.
文摘The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper.A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth,acceleration amplitude and wall stiffness.Numerical analyses using FLAC 2D were also performed considering one level of bracing.The strut forces,lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results.The study showed that in a post-seismic condition,when other factors were constant,lateral displacement,bending moment,strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration.The study also showed that as wall stiffness decreased,the lateral displacement of the wall and ground surface displacement increased,but the bending moment of the wall and strut forces decreased.The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude,but did not change significantly with wall stiffness.Strut force was the least affected parameter when compared with others under a seismic condition.
基金Supported by the National Natural Science Foundation of China(50764001)Ministry of Education"Chunhui Program",Guizhou Outstanding Young Talents Foundation(200705)Scientific and Technological Tack-ling Project of Guizhou Province(20073015)
文摘Based on cutting principle and technology development of vertical blasthole cutby stage and deck in vertical shaft excavation, combined with the merits of middle spacecharging and toe space charging, the reinforced cutting effect of central large-diameterblasthole and the method of cutting blast by stage and deck toe space charging for thevertical large-diameter blastholes was put forward and analyzed theoretically.This new cutblasting method is provided with the advantages of high blasthole using ratio, big cavitybulk, low rate of chunk, even lumpiness, and relatively high energy using ratio.The parameterchoices and practical effects of this cutting method were discussed after in situexperiment.It shows that the decked delay time of 75~100 ms is applicable.
基金the support of the National Key R&D Program of China(2017YFC1501102)the Youth Science and Technology Fund of Sichuan Province(2016JQ0011)the Key Project of the Power Construction Corporation of China(ZDZX-5)
文摘The Tangba high slope is mainly composed of coarse soils and supplies core wall materials for the construction of the Changheba dam. Since the filling intensity of the Changheba dam is high, the Tangba high slope suffers from a high-intensity excavation process, and reinforcement measures are usually not implemented immediately. Moreover, the distribution of useful materials is uneven and insufficient, and the mixing of different soil materials is necessary; thus, multiple simultaneous excavations and secondary excavation are inevitable. In the construction period from 2012 to 2016, large deformations occurred in this area, and one of the largest monitored horizontal deformations whose direction points to the opposite side of the valley even reached more than 8000 mm. According to field investigation, site monitoring and theoretical analysis, the large deformation in the Tangba high slope can be divided into two phases. In the first phase, the excavation construction breaks the original stress equilibrium state; in the second phase, the precipitation infiltration accelerates the deformation. Thus, the excavation construction and precipitation infiltration are the two major factors promoting the deformation, and the high-intensity and complex excavation process is the fundamental cause. Notably, rate of slope deformation significantly accelerated in rainy seasons due to precipitation infiltration; the rate also accelerated in early 2016 due to the high-intensity, complex excavation process. Comprehensively considering the above factors, timely and effective reinforcement measures are essential.