In this paper, we consider the unitary representations of equal rank exceptional groups of type E with a regular lambda-lowest K-type and classify those unitary representations with the nonzero Dirac cohomology.
Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pytha...Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pythagoras and the larger than life man of theoretical physics Einstein, we utilize some deep mathematical connections between equivalence classes of equivalence relations and E-infinity theory quotient space. We started from the basic principles of self similarity which came to prominence in science with the advent of the modern theory of nonlinear dynamical systems, deterministic chaos and fractals. This fundamental logico-mathematical thread related to partially ordered sets is then applied to show how the classical Newton’s kinetic energy E = 1/2mv<sup>2</sup> leads to Einstein’s celebrated maximal energy equation E = mc<sup>2</sup> and how in turn this can be dissected into the ordinary energy density E(O) = mc<sup>2</sup>/22 and the dark energy density E(D) = mc<sup>2</sup>(21/22) of the cosmos where m is the mass;v is the velocity and c is the speed of light. The important role of the exceptional Lie symmetry groups and ‘tHooft-Veltman-Wilson dimensional regularization in fractal spacetime played in the above is also highlighted. The author hopes that the unusual character of the analysis and presentation of the present work may be taken in a positive vein as seriously attempting to propose a different and new way of doing theoretical physics by treating number theory, set theory, group theory, experimental physics as well as conventional theoretical physics on the same footing and letting all these diverse tools lead us to the answer of fundamental questions without fear of being labelled in one way or another.展开更多
A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of...A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of F does not appear.In the present paper we describe effectively all exceptional groups of orders divisible by exactly two prime numbers p and q,which have unique subgroups of orders p and q.展开更多
The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show th...The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements.展开更多
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 10501025 and 10431040)
文摘In this paper, we consider the unitary representations of equal rank exceptional groups of type E with a regular lambda-lowest K-type and classify those unitary representations with the nonzero Dirac cohomology.
文摘Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pythagoras and the larger than life man of theoretical physics Einstein, we utilize some deep mathematical connections between equivalence classes of equivalence relations and E-infinity theory quotient space. We started from the basic principles of self similarity which came to prominence in science with the advent of the modern theory of nonlinear dynamical systems, deterministic chaos and fractals. This fundamental logico-mathematical thread related to partially ordered sets is then applied to show how the classical Newton’s kinetic energy E = 1/2mv<sup>2</sup> leads to Einstein’s celebrated maximal energy equation E = mc<sup>2</sup> and how in turn this can be dissected into the ordinary energy density E(O) = mc<sup>2</sup>/22 and the dark energy density E(D) = mc<sup>2</sup>(21/22) of the cosmos where m is the mass;v is the velocity and c is the speed of light. The important role of the exceptional Lie symmetry groups and ‘tHooft-Veltman-Wilson dimensional regularization in fractal spacetime played in the above is also highlighted. The author hopes that the unusual character of the analysis and presentation of the present work may be taken in a positive vein as seriously attempting to propose a different and new way of doing theoretical physics by treating number theory, set theory, group theory, experimental physics as well as conventional theoretical physics on the same footing and letting all these diverse tools lead us to the answer of fundamental questions without fear of being labelled in one way or another.
基金supported by National Natural Science Foundation of China (Grant No. 10871106)
文摘A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of F does not appear.In the present paper we describe effectively all exceptional groups of orders divisible by exactly two prime numbers p and q,which have unique subgroups of orders p and q.
文摘The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements.