The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jita...The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2–4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10^(−14)s^(−1)to 6.52×10^(−16)s^(−1).The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo–Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.展开更多
The occurrences of excess ^40Ar within a hydrothermal tourmaline is discussed in term of the analysis data of syngenetic muscovite and tourmaline from the Lushui hydrothermal tin-tungsten deposit in western Yunnan, Ch...The occurrences of excess ^40Ar within a hydrothermal tourmaline is discussed in term of the analysis data of syngenetic muscovite and tourmaline from the Lushui hydrothermal tin-tungsten deposit in western Yunnan, China, using the ^40Ar-^39Ar stepwise heating technique. About 80% excess ^40 Ar was released in the last step when the tourmaline was fused, corresponding to a release of only -3% ^39 Ar (K), which indicates that most excess ^40 Ar was held in the mineral lattice rather than in the channels parallel to the Z-axis. This suggests that the excess ^40 Ar was incorporated during crystallization and not diffused into the tourmaline during the post-crystallization history.展开更多
ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples a...ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples analyzed by laser heating yielded saddle-shaped age spectra with total gas ages of 574.5±2.5 and 562.5=±2.5 Ma. These ages are much older than the reported zircon U-Pb ages (-495 Ma) from Yuka eclogite, indicating the presence of excess ^40Ar. In order to decipher the occur- rence of excess ^40Ar and constrain the age of amphibolite-facies retrogression, two duplicate amphibole samples were further employed for ^40Ar/^39Ar in vacuo crushing analyses. Both samples exhibit similar monotonically declining release spectra, which are characterized by rapid decline of anomalously old apparent ages in the early steps. The data of the late steps yielded concordant apparent ages with pla- teau ages of 460.9±1.2 and 459.6±1.8 Ma. We interpret that gases released in the early steps derive from the significant excess ^40Ar containing secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, whereas those released in the later steps rep- resent the contribution of the small primary fluid inclusions (PFIs).展开更多
基金financially supported by the China Geological Survey Scientific Research Project(Grant Nos.DD20190167 and DD20190053)the National Natural Science Foundation of China(Grant No.42172259).
文摘The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2–4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10^(−14)s^(−1)to 6.52×10^(−16)s^(−1).The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo–Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.
基金Financial supports came from the National Natural Science Foundation of China (40472048) ;the Chinese Academy of Sciences (KZCX2-SW117 and GIGCX-0301).
文摘The occurrences of excess ^40Ar within a hydrothermal tourmaline is discussed in term of the analysis data of syngenetic muscovite and tourmaline from the Lushui hydrothermal tin-tungsten deposit in western Yunnan, China, using the ^40Ar-^39Ar stepwise heating technique. About 80% excess ^40 Ar was released in the last step when the tourmaline was fused, corresponding to a release of only -3% ^39 Ar (K), which indicates that most excess ^40 Ar was held in the mineral lattice rather than in the channels parallel to the Z-axis. This suggests that the excess ^40 Ar was incorporated during crystallization and not diffused into the tourmaline during the post-crystallization history.
基金funded by the National Natural Science Foundation of China (Nos. 41703054, 41503053)the Guangxi Natural Science Foundation Program (Nos. 2016GXNSFCA380022, 2014GXNSFBA118231)the Chinese Academy of Sciences-Royal Netherlands Academy of Arts and Sciences Joint PhD Training Programme (No. O8PhD-08)
文摘ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples analyzed by laser heating yielded saddle-shaped age spectra with total gas ages of 574.5±2.5 and 562.5=±2.5 Ma. These ages are much older than the reported zircon U-Pb ages (-495 Ma) from Yuka eclogite, indicating the presence of excess ^40Ar. In order to decipher the occur- rence of excess ^40Ar and constrain the age of amphibolite-facies retrogression, two duplicate amphibole samples were further employed for ^40Ar/^39Ar in vacuo crushing analyses. Both samples exhibit similar monotonically declining release spectra, which are characterized by rapid decline of anomalously old apparent ages in the early steps. The data of the late steps yielded concordant apparent ages with pla- teau ages of 460.9±1.2 and 459.6±1.8 Ma. We interpret that gases released in the early steps derive from the significant excess ^40Ar containing secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, whereas those released in the later steps rep- resent the contribution of the small primary fluid inclusions (PFIs).