Unloading induces negative excess porewater pressure in soil mass around a foundation pit during excavation. In this work, the dissipation rule of negative excess porewater pressure after excavation was studied. Analy...Unloading induces negative excess porewater pressure in soil mass around a foundation pit during excavation. In this work, the dissipation rule of negative excess porewater pressure after excavation was studied. Analytical formulas for calculating the negative excess porewater pressures and the effective stresses were derived based on one-dimensional consolidation theory and Terzaghi’s effective stress principle. The influence of the dissipation of negative excess porewater pressure on earth pressure inside and outside a foundation pit and the stability of the retaining structure were analyzed through a numerical example. It was indicated that the dissipation of negative excess porewater pressure is harmful to the stability of the retaining structure and that rapid construction can make full use of the negative porewater pressure.展开更多
Based on 3D Biot’s consolidation theory and nonlinear Duncan-Chang’s model, a 3D FEM (finite element method) program is developed considering the coupling of groundwater seepage and soil skeleton deformation during ...Based on 3D Biot’s consolidation theory and nonlinear Duncan-Chang’s model, a 3D FEM (finite element method) program is developed considering the coupling of groundwater seepage and soil skeleton deformation during excavation. The comparison between the analysis result considering the variation of water head difference and that without considering it shows that the porewater pressure distribution of the former is distinctly different from that of the latter and that the foundation pit de- formations of the former are larger than those of the latter, so that the result without considering the variation of water head dif- ference is unreliable. The distribution rules of soil horizontal and vertical displacements around the pit and excess porewater pressure are analyzed in detail in time and space, which is very significant for guiding underground engineering construction and ensuring environment safety around the pit.展开更多
基金Project (No. 20030335027) supported by the National ResearchFoundation for the Doctoral Program of Higher Education of China
文摘Unloading induces negative excess porewater pressure in soil mass around a foundation pit during excavation. In this work, the dissipation rule of negative excess porewater pressure after excavation was studied. Analytical formulas for calculating the negative excess porewater pressures and the effective stresses were derived based on one-dimensional consolidation theory and Terzaghi’s effective stress principle. The influence of the dissipation of negative excess porewater pressure on earth pressure inside and outside a foundation pit and the stability of the retaining structure were analyzed through a numerical example. It was indicated that the dissipation of negative excess porewater pressure is harmful to the stability of the retaining structure and that rapid construction can make full use of the negative porewater pressure.
基金Project supported by the China Postdoctoral Science Foundation (No. 20060400672)Innovation Fund of Shanghai University, China
文摘Based on 3D Biot’s consolidation theory and nonlinear Duncan-Chang’s model, a 3D FEM (finite element method) program is developed considering the coupling of groundwater seepage and soil skeleton deformation during excavation. The comparison between the analysis result considering the variation of water head difference and that without considering it shows that the porewater pressure distribution of the former is distinctly different from that of the latter and that the foundation pit de- formations of the former are larger than those of the latter, so that the result without considering the variation of water head dif- ference is unreliable. The distribution rules of soil horizontal and vertical displacements around the pit and excess porewater pressure are analyzed in detail in time and space, which is very significant for guiding underground engineering construction and ensuring environment safety around the pit.