CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improv...CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h.展开更多
The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki...The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.展开更多
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro...The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.展开更多
In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(C...In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality.展开更多
Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh bein...Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh being expensive,only a few studies have examined its electrocatalytic mass activity.Herein,surface-limited cation exchange and electrochemical activation processes are designed to remarkably enhance the mass activity of Rh.Rh atoms were readily replaced at the Ni sites on the surface of NiOOH electrodes by cation exchange,and the resulting RhOOH compounds were activated by the electrochemical reduction process.The cation exchange-derived Rh catalysts exhibited particle sizes not exceeding 2 nm without agglomeration,indicating a decrease in the number of inactive inner Rh atoms.Consequently,an improved mass activity of 30 A mg_(Rh)^(-1)was achieved at 0.4 V versus reversible hydrogen electrode.Furthermore,the two-electrode system employing the same CE-derived Rh electrodes achieved overall hydrazine splitting over 36 h at a stable low voltage.The proposed surface-limited CE process is an effective method for reducing inactive atoms of expensive noble metal catalysts.展开更多
To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data prov...To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE.展开更多
Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce funct...Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce functional groups at specificpositions within pores and crystals.This review explores two prominent strategiesfor achieving the positional functionalization of MOFs:post-synthetic ligand exchange(PSE)and MOF-on-MOF.In PSE,the existing ligands within solid-stateMOFs can be selectively replaced by the desired functional groups in solutionthrough ligand dynamics.This invasive functionalization provides a flexibleapproach to fine-tuning the surface of the MOFs with the target functionality.Conversely,MOF-on-MOF strategies are additive methodologies involving thecontrolled growth of one MOF layer onto another.The functionality of the core andshell(or surface)can be independently controlled.This review critically examinesthe examples,strengths,limitations,and applications of these strategies,emphasizingtheir significance in advancing the field of MOF functionalization andpaving the way for tailored multifunctional materials with precise and specificproperties.展开更多
The hydrothermal behavior of air inside a solar channel heat exchanger equipped with various shaped ribs is analyzed numerically.The bottom wall of the exchanger is kept adiabatic,while a constant value of the tempera...The hydrothermal behavior of air inside a solar channel heat exchanger equipped with various shaped ribs is analyzed numerically.The bottom wall of the exchanger is kept adiabatic,while a constant value of the temperature is set at the upper wall.The duct is equipped with a flat rectangular fin on the upper wall and an upstream V-shaped baffle on the lower wall.Furthermore,five hot wall-attached rib shapes are considered:trapezoidal,square,triangular pointing upstream(type Ⅰ),triangular pointing downstream(type Ⅱ),and equilateral-triangular(type Ⅲ)cross sections.Effects of the flow rates are also inspected for various Reynolds numbers in the turbulent regime(1.2×10^(4)-3.2×10^(4)).The highest performance(η)value is given for the Ⅱ-triangular rib case in all Re values,while the square-shaped ribs show a significant decrease in the η along the achieved Re range.The η value at Remax is 2.567 for the Ⅱ-triangular roughness case.Compared with the other simulated cases,this performance is decreased by about 3.768%in the case of Ⅰ-triangular ribs,15.249% in the case of Ⅲ-triangular ribs,20.802% in the case of trapezoidal ribs,while 27.541% in the case of square ribs,at the same Remax.Also,a comparison ismade with air-heat exchangers that have non-rough walls and contain cross-shaped VGs presented previously,in order to highlight the effectiveness of the rough surface presence in the baffled and finned channels.The obtained results indicated that the triangular-shaped rib(type Ⅱ)has the most significant hydrothermal behavior than the other cases.This indicates the necessity of roughness heat transfer surfaces for finned and baffled channels to improve significantly the performance of the air-heat exchangers they contain.展开更多
In this paper, an efficient methodology for synthesizing the indirect work exchange networks(WEN) considering isothermal process and adiabatic process respectively based on transshipment model is first proposed. In co...In this paper, an efficient methodology for synthesizing the indirect work exchange networks(WEN) considering isothermal process and adiabatic process respectively based on transshipment model is first proposed. In contrast with superstructure method, the transshipment model is easier to obtain the minimum utility consumption taken as the objective function and more convenient for us to attain the optimal network configuration for further minimizing the number of units. Different from division of temperature intervals in heat exchange networks,different pressure intervals are gained according to the maximum compression/expansion ratio in consideration of operating principles of indirect work exchangers and the characteristics of no pressure constraints for stream matches. The presented approach for WEN synthesis is a linear programming model applied to the isothermal process, but for indirect work exchange networks with adiabatic process, a nonlinear programming model needs establishing. Additionally, temperatures should be regarded as decision variables limited to the range between inlet and outlet temperatures in each sub-network. The constructed transshipment model can be solved first to get the minimum utility consumption and further to determine the minimum number of units by merging the adjacent pressure intervals on the basis of the proposed merging methods, which is proved to be effective through exergy analysis at the level of units structures. Finally, two cases are calculated to confirm it is dramatically feasible and effective that the optimal WEN configuration can be gained by the proposed method.展开更多
On November 28,the First Dialogue on Exchanges and Mutual Learning among Civilizations organized by the Chinese Association for International Understanding was staged in the Forbidden City.Some 100 participants from a...On November 28,the First Dialogue on Exchanges and Mutual Learning among Civilizations organized by the Chinese Association for International Understanding was staged in the Forbidden City.Some 100 participants from all over the world were present at the Dialogue.Participants made discussions themed on"building a world featuring mutual learning and harmonious coexistence among different civilizations".Ji Bingxuan,Vice Chairman of Standing Committee of the National People’s Congress and President of the Chinese Association for International Understanding attended the opening ceremony and delivered a keynote speech.展开更多
正The Understanding and Cooperation Dialogue, Sponsored by the Chinese Association for International Understanding (CAFIU) and the China Foundation for Peace and Development (CFPD), and Co-organized by the Chinese Peo...正The Understanding and Cooperation Dialogue, Sponsored by the Chinese Association for International Understanding (CAFIU) and the China Foundation for Peace and Development (CFPD), and Co-organized by the Chinese People' s Association for Peace and展开更多
On the sunny days, there were little diurnal changes in both azimuth and directional angle for either sun_ or shade_leaflet. However, there existed a significant diurnal change in midrib angle that reflected movements...On the sunny days, there were little diurnal changes in both azimuth and directional angle for either sun_ or shade_leaflet. However, there existed a significant diurnal change in midrib angle that reflected movements regarding evasion of light stress around noon hours. On the cloudy day, a very little diurnal difference was found in azimuth, directional and midrib angle. It is suggested that changing light environment is the main factor for inducing leaflet movement of Robinia pseudoacacia , and the rhythmical movement does not attribute to the leaflet movement. Leaf orientation control test showed that the photosynthetic rate ( Pn ), stomatal conductance ( g s ) and transpiration ( Tr ) of the artificial fixed_leaflets were significantly lower than that of control_leaflets. And the leaf temperature ( Tl ) of the fixed leaflets significantly exceeded that of control_leaflets, which may attribute to the significant difference of light interception between the fixed and control_leaflets. The light_dependent leaflet movement is the morphological adjustment of maintaining optimal physiological status.展开更多
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie...Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
The Soft X-ray Imager(SXI)on board the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)spacecraft will be able to view the Earth’s magnetosheath in soft X-rays.Simulated images of the X-ray emission visible f...The Soft X-ray Imager(SXI)on board the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)spacecraft will be able to view the Earth’s magnetosheath in soft X-rays.Simulated images of the X-ray emission visible from the position of SMILE are created for a range of solar wind densities by using 3 years of the SMILE mission orbit,together with models of the expected X-ray emissivity from the Earth’s magnetosheath.Results from global magnetohydrodynamic simulations and a simple model for exospheric neutral densities are used to compare the locations of the lines of sight along which integrated soft X-ray intensities peak with the lines of sight lying tangent to surfaces(defined here to be the magnetopause)along which local soft X-ray intensities peak or exhibit their strongest gradients,or both,for strongly southward interplanetary magnetic field conditions when no depletion or low-latitude boundary layers are expected.Where,in the parameter space of the various times and seasons,orbital phases,solar wind conditions,and magnetopause models,the alignment of the X-ray emission peak with the magnetopause tangent is good,or is not,is presented.The main results are as follows.The spacecraft needs to be positioned well outside the magnetopause;low-altitude times near perigee are not good.In addition,there are seasonal aspects:dayside-apogee orbits are generally very good because the spacecraft travels out sunward at high altitude,but nightside-apogee orbits,behind the Earth,are bad because the spacecraft only rarely leaves the magnetopause.Dusk-apogee and dawnapogee orbits are intermediate.Dayside-apogee orbits worsen slightly over the first three mission years,whereas nightside-apogee orbits improve slightly.Additionally,many more times of good agreement with the peak-to-tangent hypothesis occur when the solar wind is in a high-density state,as opposed to a low-density state.In a high-density state,the magnetopause is compressed,and the spacecraft is more often a good distance outside the magnetopause.展开更多
One type of ZSM-5 zeolite with large partical size was prepared and characterized by XRD, SEM, N2 adsorption-desorption, XRF, Py-IR and NH3-TPD techniques. Effects of ammonium exchange and SiO2/Al2O3 molar ratios on t...One type of ZSM-5 zeolite with large partical size was prepared and characterized by XRD, SEM, N2 adsorption-desorption, XRF, Py-IR and NH3-TPD techniques. Effects of ammonium exchange and SiO2/Al2O3 molar ratios on the reaction of methanol to propylene (MTP) over Na-ZSM-5 and H-ZSM-5 zeolites have been studied in a fixed-bed flow reactor under the operating conditions of T = 500 °C, P = 1 atm, and WHSV = 6 h-1. Ammonium exchange led to a rapid decrease in Na content for Na-ZSM-5 zeolite. The reaction results indicated that Na-ZSM-5 and H-ZSM-5 with different SiO2/Al2O3 molar ratios all exhibited high activity for methanol conversion. Ammonium exchange and the decreased SiO2/Al2O3 molar ratio of ZSM-5 zeolite led to an increase both in strong acid sites and weak acid sites. Na-ZSM-5 with high SiO2/Al2O3 molar ratio was favorable for the formation of propylene. The highest propylene selectivity (45.9%) was obtained over Na-ZSM-5 zeolite catalyst with SiO2/Al2O3 molar ratio of 220.展开更多
The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initia...The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non–linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.展开更多
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo...Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.展开更多
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho...Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously.展开更多
Ce (Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quatemized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol...Ce (Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quatemized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol·L^-1) and temperature (278 ~318 K) on Ce( Ⅳ ) sorption efficiency was investigated. Sorption increased with increasing nitric acid concentration, indicating that [Ce(NO3)6]^2- complex is the main adsorbed Ce(Ⅳ) species. Oxidation of sorbents by adsorbed Ce ( Ⅳ ) species resulting in Ce ( Ⅲ ) release to the solution was observed. Pyridine based anion exchangers exhibited higher oxidation stability compared to the commercial strong base anion exchanger. Ce( Ⅳ ) reduction was temperature dependent and obeyed pseudo-first-order reaction kinetics. Column separation of Ce ( Ⅳ ) from La ( Ⅲ ) and Y ( Ⅲ ) was carried out from 6 mol·L^-1 nitric acid with PVP based anion exchanger. Reasonable Ce (Ⅳ) breakthrough capacity (0.7 mol·kg^-1 PVP) was achieved. No remarkable decrease of capacity was observed within 3 consequent runs. In contrast, Ce (Ⅲ) leakage due to reduction decreased and breakthrough capacity slightly increased. This effect was more pronounced with increasing temperature. Regeneration with 0.1 mol·L^- 1 nitric acid was successful (recovery 100% ± 4% ) and Ce solution of high purity ( 〉 99.97% ) with respect to La and Y content was gained.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3602902)the Key Projects of National Natural Science Foundation of China(62234004)+5 种基金Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Science and Technology Innovation 2025 Major Project of Ningbo(2022Z085)Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B)Flexible Electronics Zhejiang Province Key Laboratory Fund Project(2022FEO02)Zhejiang Provincial Natural Science Foundation of China(LR21F050001).
文摘CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h.
文摘The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.
基金supported by the KRISS(Korea Research Institute of Standards and Science)MPI Lab.program。
文摘The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.
基金funded by Shaanxi Province Key Industrial Chain Project(2023-ZDLGY-24)Industrialization Project of Shaanxi Provincial Education Department(21JC018)+1 种基金Shaanxi Province Key Research and Development Program(2021ZDLGY13-02)the Open Foundation of State Key Laboratory for Advanced Metals and Materials(2022-Z01).
文摘In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry ofEducation(2021R1A2C3011870 and 2019R1A6A1A03033215)the Korea Research Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2020H1D3A1A04081323)
文摘Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh being expensive,only a few studies have examined its electrocatalytic mass activity.Herein,surface-limited cation exchange and electrochemical activation processes are designed to remarkably enhance the mass activity of Rh.Rh atoms were readily replaced at the Ni sites on the surface of NiOOH electrodes by cation exchange,and the resulting RhOOH compounds were activated by the electrochemical reduction process.The cation exchange-derived Rh catalysts exhibited particle sizes not exceeding 2 nm without agglomeration,indicating a decrease in the number of inactive inner Rh atoms.Consequently,an improved mass activity of 30 A mg_(Rh)^(-1)was achieved at 0.4 V versus reversible hydrogen electrode.Furthermore,the two-electrode system employing the same CE-derived Rh electrodes achieved overall hydrazine splitting over 36 h at a stable low voltage.The proposed surface-limited CE process is an effective method for reducing inactive atoms of expensive noble metal catalysts.
基金Guangdong Basic and Applied Basic Research Foundation(2023A1515011323)National Natural Science Foun-dation of China(42130604,42130605,72293604)+4 种基金Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Waters(GSTOEW)First-Class Discipline Plan of Guangdong Province(080503032101,231420003)Fundamental Research Funds for the Central Universities(202362001,202072010)China Scholarship Council(202208440223)Natural Science Foundation of Shanghai(23ZR1473800)。
文摘To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2022R1A2C1009706).
文摘Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce functional groups at specificpositions within pores and crystals.This review explores two prominent strategiesfor achieving the positional functionalization of MOFs:post-synthetic ligand exchange(PSE)and MOF-on-MOF.In PSE,the existing ligands within solid-stateMOFs can be selectively replaced by the desired functional groups in solutionthrough ligand dynamics.This invasive functionalization provides a flexibleapproach to fine-tuning the surface of the MOFs with the target functionality.Conversely,MOF-on-MOF strategies are additive methodologies involving thecontrolled growth of one MOF layer onto another.The functionality of the core andshell(or surface)can be independently controlled.This review critically examinesthe examples,strengths,limitations,and applications of these strategies,emphasizingtheir significance in advancing the field of MOF functionalization andpaving the way for tailored multifunctional materials with precise and specificproperties.
文摘The hydrothermal behavior of air inside a solar channel heat exchanger equipped with various shaped ribs is analyzed numerically.The bottom wall of the exchanger is kept adiabatic,while a constant value of the temperature is set at the upper wall.The duct is equipped with a flat rectangular fin on the upper wall and an upstream V-shaped baffle on the lower wall.Furthermore,five hot wall-attached rib shapes are considered:trapezoidal,square,triangular pointing upstream(type Ⅰ),triangular pointing downstream(type Ⅱ),and equilateral-triangular(type Ⅲ)cross sections.Effects of the flow rates are also inspected for various Reynolds numbers in the turbulent regime(1.2×10^(4)-3.2×10^(4)).The highest performance(η)value is given for the Ⅱ-triangular rib case in all Re values,while the square-shaped ribs show a significant decrease in the η along the achieved Re range.The η value at Remax is 2.567 for the Ⅱ-triangular roughness case.Compared with the other simulated cases,this performance is decreased by about 3.768%in the case of Ⅰ-triangular ribs,15.249% in the case of Ⅲ-triangular ribs,20.802% in the case of trapezoidal ribs,while 27.541% in the case of square ribs,at the same Remax.Also,a comparison ismade with air-heat exchangers that have non-rough walls and contain cross-shaped VGs presented previously,in order to highlight the effectiveness of the rough surface presence in the baffled and finned channels.The obtained results indicated that the triangular-shaped rib(type Ⅱ)has the most significant hydrothermal behavior than the other cases.This indicates the necessity of roughness heat transfer surfaces for finned and baffled channels to improve significantly the performance of the air-heat exchangers they contain.
基金Supported by the National Natural Science Foundation of China(21576036 and 21776035)
文摘In this paper, an efficient methodology for synthesizing the indirect work exchange networks(WEN) considering isothermal process and adiabatic process respectively based on transshipment model is first proposed. In contrast with superstructure method, the transshipment model is easier to obtain the minimum utility consumption taken as the objective function and more convenient for us to attain the optimal network configuration for further minimizing the number of units. Different from division of temperature intervals in heat exchange networks,different pressure intervals are gained according to the maximum compression/expansion ratio in consideration of operating principles of indirect work exchangers and the characteristics of no pressure constraints for stream matches. The presented approach for WEN synthesis is a linear programming model applied to the isothermal process, but for indirect work exchange networks with adiabatic process, a nonlinear programming model needs establishing. Additionally, temperatures should be regarded as decision variables limited to the range between inlet and outlet temperatures in each sub-network. The constructed transshipment model can be solved first to get the minimum utility consumption and further to determine the minimum number of units by merging the adjacent pressure intervals on the basis of the proposed merging methods, which is proved to be effective through exergy analysis at the level of units structures. Finally, two cases are calculated to confirm it is dramatically feasible and effective that the optimal WEN configuration can be gained by the proposed method.
文摘On November 28,the First Dialogue on Exchanges and Mutual Learning among Civilizations organized by the Chinese Association for International Understanding was staged in the Forbidden City.Some 100 participants from all over the world were present at the Dialogue.Participants made discussions themed on"building a world featuring mutual learning and harmonious coexistence among different civilizations".Ji Bingxuan,Vice Chairman of Standing Committee of the National People’s Congress and President of the Chinese Association for International Understanding attended the opening ceremony and delivered a keynote speech.
文摘正The Understanding and Cooperation Dialogue, Sponsored by the Chinese Association for International Understanding (CAFIU) and the China Foundation for Peace and Development (CFPD), and Co-organized by the Chinese People' s Association for Peace and
文摘On the sunny days, there were little diurnal changes in both azimuth and directional angle for either sun_ or shade_leaflet. However, there existed a significant diurnal change in midrib angle that reflected movements regarding evasion of light stress around noon hours. On the cloudy day, a very little diurnal difference was found in azimuth, directional and midrib angle. It is suggested that changing light environment is the main factor for inducing leaflet movement of Robinia pseudoacacia , and the rhythmical movement does not attribute to the leaflet movement. Leaf orientation control test showed that the photosynthetic rate ( Pn ), stomatal conductance ( g s ) and transpiration ( Tr ) of the artificial fixed_leaflets were significantly lower than that of control_leaflets. And the leaf temperature ( Tl ) of the fixed leaflets significantly exceeded that of control_leaflets, which may attribute to the significant difference of light interception between the fixed and control_leaflets. The light_dependent leaflet movement is the morphological adjustment of maintaining optimal physiological status.
文摘Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金support from the United Kingdom Space Agency(UKSA)the Science and Technology Facilities Council(STFC)under Grant No.ST/T002085/1。
文摘The Soft X-ray Imager(SXI)on board the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)spacecraft will be able to view the Earth’s magnetosheath in soft X-rays.Simulated images of the X-ray emission visible from the position of SMILE are created for a range of solar wind densities by using 3 years of the SMILE mission orbit,together with models of the expected X-ray emissivity from the Earth’s magnetosheath.Results from global magnetohydrodynamic simulations and a simple model for exospheric neutral densities are used to compare the locations of the lines of sight along which integrated soft X-ray intensities peak with the lines of sight lying tangent to surfaces(defined here to be the magnetopause)along which local soft X-ray intensities peak or exhibit their strongest gradients,or both,for strongly southward interplanetary magnetic field conditions when no depletion or low-latitude boundary layers are expected.Where,in the parameter space of the various times and seasons,orbital phases,solar wind conditions,and magnetopause models,the alignment of the X-ray emission peak with the magnetopause tangent is good,or is not,is presented.The main results are as follows.The spacecraft needs to be positioned well outside the magnetopause;low-altitude times near perigee are not good.In addition,there are seasonal aspects:dayside-apogee orbits are generally very good because the spacecraft travels out sunward at high altitude,but nightside-apogee orbits,behind the Earth,are bad because the spacecraft only rarely leaves the magnetopause.Dusk-apogee and dawnapogee orbits are intermediate.Dayside-apogee orbits worsen slightly over the first three mission years,whereas nightside-apogee orbits improve slightly.Additionally,many more times of good agreement with the peak-to-tangent hypothesis occur when the solar wind is in a high-density state,as opposed to a low-density state.In a high-density state,the magnetopause is compressed,and the spacecraft is more often a good distance outside the magnetopause.
文摘One type of ZSM-5 zeolite with large partical size was prepared and characterized by XRD, SEM, N2 adsorption-desorption, XRF, Py-IR and NH3-TPD techniques. Effects of ammonium exchange and SiO2/Al2O3 molar ratios on the reaction of methanol to propylene (MTP) over Na-ZSM-5 and H-ZSM-5 zeolites have been studied in a fixed-bed flow reactor under the operating conditions of T = 500 °C, P = 1 atm, and WHSV = 6 h-1. Ammonium exchange led to a rapid decrease in Na content for Na-ZSM-5 zeolite. The reaction results indicated that Na-ZSM-5 and H-ZSM-5 with different SiO2/Al2O3 molar ratios all exhibited high activity for methanol conversion. Ammonium exchange and the decreased SiO2/Al2O3 molar ratio of ZSM-5 zeolite led to an increase both in strong acid sites and weak acid sites. Na-ZSM-5 with high SiO2/Al2O3 molar ratio was favorable for the formation of propylene. The highest propylene selectivity (45.9%) was obtained over Na-ZSM-5 zeolite catalyst with SiO2/Al2O3 molar ratio of 220.
基金the financial support under the Short Term Grant (No.304/PKIMIA/636065)
文摘The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non–linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+3 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of China.supported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)supported by Royal Society grant DHFR1211068。
文摘Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.
基金supported by the Shandong Province Natural Science Foundation Youth Branch(ZR2023QC157)the National Natural Science Foundation of China(51979233)+1 种基金the Key Research and Development Project of Shaanxi Province(2022KW-47,2022NY-220)the Heze University Doctoral Research Fund(XY21BS24,XY22BS17).
文摘Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously.
基金Project supported bythe Japan Societyfor the Promotion of Science (JSPS)
文摘Ce (Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quatemized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol·L^-1) and temperature (278 ~318 K) on Ce( Ⅳ ) sorption efficiency was investigated. Sorption increased with increasing nitric acid concentration, indicating that [Ce(NO3)6]^2- complex is the main adsorbed Ce(Ⅳ) species. Oxidation of sorbents by adsorbed Ce ( Ⅳ ) species resulting in Ce ( Ⅲ ) release to the solution was observed. Pyridine based anion exchangers exhibited higher oxidation stability compared to the commercial strong base anion exchanger. Ce( Ⅳ ) reduction was temperature dependent and obeyed pseudo-first-order reaction kinetics. Column separation of Ce ( Ⅳ ) from La ( Ⅲ ) and Y ( Ⅲ ) was carried out from 6 mol·L^-1 nitric acid with PVP based anion exchanger. Reasonable Ce (Ⅳ) breakthrough capacity (0.7 mol·kg^-1 PVP) was achieved. No remarkable decrease of capacity was observed within 3 consequent runs. In contrast, Ce (Ⅲ) leakage due to reduction decreased and breakthrough capacity slightly increased. This effect was more pronounced with increasing temperature. Regeneration with 0.1 mol·L^- 1 nitric acid was successful (recovery 100% ± 4% ) and Ce solution of high purity ( 〉 99.97% ) with respect to La and Y content was gained.