Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equ...Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data.展开更多
Sediment sampling and longitudinal river-bottom surveys were conducted along the thalweg on the Tanana River near the city of Nenana, Alaska, USA, to provide basic information for the engineering design requirements o...Sediment sampling and longitudinal river-bottom surveys were conducted along the thalweg on the Tanana River near the city of Nenana, Alaska, USA, to provide basic information for the engineering design requirements of hydrokinetic devices to be deployed in the area. The study reach was located at approximately 64°33'50'N and 149°04'W. The Tanana is a large glacier-fed river, with open-water flow conditions from May to October. The river presents a single channel in the study area. Granulometric analyses of sediment moving near the riverbed reveals the coexistence of three distinctive types of sediment along the study reach: 1) nearly uniform fine sand;2) bimodal distributions containing fine sand and medium gravel;and 3) medium gravel. Preliminary relationships between sediment loads and discharge were developed. Dunes with small superimposed dunes were found along the reach. The basic geometric parameters (i.e., wavelength and height) of dunes were measured, and steepness was calculated. In general, dune wavelength increased with increasing discharge. Dune wavelengths ranged from 41 to 67 m, while small-dune wavelengths ranged from 13 to 16 m. Steepness increased slightly with increasing discharge.展开更多
Knowledge of the equilibrium bed-concentration is vital to mathematic a l modeling of the river-bed deformation associated with suspended load but prev i ous investigations only dealt with the reference concentration ...Knowledge of the equilibrium bed-concentration is vital to mathematic a l modeling of the river-bed deformation associated with suspended load but prev i ous investigations only dealt with the reference concentration of uniform sedime nt because of difficulties in observation of the bed-concentration. This work i s a first attempt to develop a theoretical formula for the equilibrium bed-conce n tration of any fraction of nonuniform sediment defined at the bed-surface. The f ormula is based on a stochastic-mechanistic model for the exchange of nonunifor m sediment near the bed, and described as a function of incipient motion probabil ity, non-ceasing probability, pick-up probability, and the ratio of the averag e single-step continuous motion time to static time. Comparison of bed-concentra ti on calculated from the proposed formula with the measured data showed satisfacto ry agreement, indicating the present formula can be used for solving the differe ntial equation governing the motion of suspended load.展开更多
Prediction of coastal sediment transport is of particularly importance for analyzing coast erosion accurately and solving the corresponding coast protection engineering problems.The present study provided a numerical ...Prediction of coastal sediment transport is of particularly importance for analyzing coast erosion accurately and solving the corresponding coast protection engineering problems.The present study provided a numerical scheme for sediment transport in coastal waves and wave-induced currents.In the scheme,the sand transport model was implemented with wave refraction-diffraction model and near-shore current model.Coastal water wave was simulated by using the parabolic mild-slope equation in which wave refraction,diffraction and breaking effects are considered.Wave-induced current was simulated by using the nonlinear shallow water equations in which wave provides radiation stresses for driving current.Then,sediment transport in waves and wave-induced currents was simulated by using the two-dimensional suspended sediment transport equations for suspended sediment and the bed-load transport equation for bed load.The numerical scheme was validated by experiment results from the Large-scale Sediment Transport Facility at the US Army Corps of Engineer Research and Development Center in Vicksburg.The numerical results showed that the present scheme is an effective tool for modeling coastal sediment transport in waves and near-shore currents.展开更多
A set of new 2-D equations of interchange between suspended sediment and bed materials was serived by theoretical deduction based on the systematic summarization and assessment the previous studies of simulating the i...A set of new 2-D equations of interchange between suspended sediment and bed materials was serived by theoretical deduction based on the systematic summarization and assessment the previous studies of simulating the interchange between suspended sediment and bed materials in the Lower Yellow River. This model was used to simulate the erosion and deposition processes caused by the interchange between suspended sediment and bed materials in a sketch channel. The results show that these equations are well consistent with the laws of interchange between suspended sediment and bed materials. Furthermore, compared with previous models, it has important practical value not only because of strong theoretical foundation, but also for smaller amount of calculating work and convenient application in practice.展开更多
The suspended sediment transport equation and its near-bed sediment flux are one of the key problems of sediment transport research under nonequilibrium condition. Based on the three-dimensional primitive suspended tr...The suspended sediment transport equation and its near-bed sediment flux are one of the key problems of sediment transport research under nonequilibrium condition. Based on the three-dimensional primitive suspended transport equation, the two-dimensional suspended sediment transport equation is deduced. The derived process indicates that the physical essence of the near-bed sediment flux is right the bottom boundary condition for the suspended sediment transport equation. This paper analyzes the internal relations between the two methods of sediment carrying capacity and shear stress in common use, points out the consistency of these two methods in terms of form and physical meaning, and unifies these two methods theoretically. Furthermore, based on the analysis and comparison of the expressions of the near-bed sediment flux, this paper summarizes some problems to which attention should be paid, thus offering a novel approach to the study and the solution of the problems of suspended sediment transport and exchange flux of near-bed water sediment.展开更多
Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the ad...Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.展开更多
Liquefied Natural Gas (LNG) port is located at Abu Qir Bay on the northwestern coast of the Nile delta, Egypt. The port was constructed in 2004 to export liquefied natural gas worldwide. The offshore basins of this po...Liquefied Natural Gas (LNG) port is located at Abu Qir Bay on the northwestern coast of the Nile delta, Egypt. The port was constructed in 2004 to export liquefied natural gas worldwide. The offshore basins of this port including the turning and berthing areas (15-m depth) are connected to the deep water by a 15-m depth dredged channel that extends 4 km offshore. However, the navigation channel and its contiguous basins have experienced problematic shoaling that might affect the navigation activities of gas tankers. Sedimentation processes have been investigated by analyses of waves, currents, bathymetry, grain size of seabed and channel dimensions. Sedimentation rates are estimated using a developed numerical model. Sedimentation rate fluctuates between 0.048 × 106 m3/month and 0.388 × 106 m3/month, with an annual sedimentation rate of 1.977 × 106 m3/yr. The variance in the sedimentation rates between winter and summer resulted in increasing of current speed and direction flowing towards offshore. The sedimentation process is influenced by the temporal variability in the direction and intensity of the predominant waves, currents, orientation of navigation channel, basin breakwaters, seafloor morphology and sediment sources. Due to the geographic location of LNG port it lays within a sediment sink for sediments supplied from different alternating directions by several pathways, flowing towards the N-W, S-W, N-E, and S-E quadrants. Most of these currents components are substantially effective in transporting fine-grained sediment towards the navigation channel axis and contiguous basins. Together with these currents, the predominant NW and SE waves acting to agitate and stirrup sediments in the vicinity of the port, and thereby accelerating sedimentation rates.展开更多
Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary wa...Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.展开更多
Given the challenges of re-creating complex bed load(BL)transport processes in rivers,models are preferred over gathering and examining field data.The highlight of the present research is to develop an approach to det...Given the challenges of re-creating complex bed load(BL)transport processes in rivers,models are preferred over gathering and examining field data.The highlight of the present research is to develop an approach to determine the ungauged bed load concentration(BLC_(u))utilizing the measured suspended sediment concentration(SSC)and hydraulic variables of the last four decades for the Mahanadi River Basin.This technique employs shear stress and SSC equations for turbulent open channel flow.Besides,the predicted BLC_(u)is correlated with SSC using a power relation to estimate BLC_(u)on the river and tributaries.Eventually,different BL functions(BLF)efficiency is assessed across stations.The model predicted BLC_(u)is comparable with the published data for sandy rivers and falls within±20%.Outliers in hydraulic and sedimentological statistics significantly influence estimating the BL fraction apart from higher relative ratios and catchment geology.The constants of power functions are physically linked to sediment transport configuration,mechanism,and inflow to the stream.The stream power-based BLF best predicts the BL transport,followed by shear stress and unit discharge approaches.The disparity in the estimation of BLC_(u)results from station-specific physical factors,sampling data dispersion,and associated uncertainties.展开更多
基金supported by the Spanish MICINN project MTM2013-43745-R and MTM2017-86459-Rthe Xunta de Galicia+1 种基金the FEDER under research project ED431C 2017/60-014supported by PRODEP project UAM-PTC-669
文摘Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data.
文摘Sediment sampling and longitudinal river-bottom surveys were conducted along the thalweg on the Tanana River near the city of Nenana, Alaska, USA, to provide basic information for the engineering design requirements of hydrokinetic devices to be deployed in the area. The study reach was located at approximately 64°33'50'N and 149°04'W. The Tanana is a large glacier-fed river, with open-water flow conditions from May to October. The river presents a single channel in the study area. Granulometric analyses of sediment moving near the riverbed reveals the coexistence of three distinctive types of sediment along the study reach: 1) nearly uniform fine sand;2) bimodal distributions containing fine sand and medium gravel;and 3) medium gravel. Preliminary relationships between sediment loads and discharge were developed. Dunes with small superimposed dunes were found along the reach. The basic geometric parameters (i.e., wavelength and height) of dunes were measured, and steepness was calculated. In general, dune wavelength increased with increasing discharge. Dune wavelengths ranged from 41 to 67 m, while small-dune wavelengths ranged from 13 to 16 m. Steepness increased slightly with increasing discharge.
文摘Knowledge of the equilibrium bed-concentration is vital to mathematic a l modeling of the river-bed deformation associated with suspended load but prev i ous investigations only dealt with the reference concentration of uniform sedime nt because of difficulties in observation of the bed-concentration. This work i s a first attempt to develop a theoretical formula for the equilibrium bed-conce n tration of any fraction of nonuniform sediment defined at the bed-surface. The f ormula is based on a stochastic-mechanistic model for the exchange of nonunifor m sediment near the bed, and described as a function of incipient motion probabil ity, non-ceasing probability, pick-up probability, and the ratio of the averag e single-step continuous motion time to static time. Comparison of bed-concentra ti on calculated from the proposed formula with the measured data showed satisfacto ry agreement, indicating the present formula can be used for solving the differe ntial equation governing the motion of suspended load.
基金The National Natural Science Foundation of China under contract Nos 51579036 and 51579030the Fundamental Research Funds for the Central Universities of China under contract No.DUT14YQ10
文摘Prediction of coastal sediment transport is of particularly importance for analyzing coast erosion accurately and solving the corresponding coast protection engineering problems.The present study provided a numerical scheme for sediment transport in coastal waves and wave-induced currents.In the scheme,the sand transport model was implemented with wave refraction-diffraction model and near-shore current model.Coastal water wave was simulated by using the parabolic mild-slope equation in which wave refraction,diffraction and breaking effects are considered.Wave-induced current was simulated by using the nonlinear shallow water equations in which wave provides radiation stresses for driving current.Then,sediment transport in waves and wave-induced currents was simulated by using the two-dimensional suspended sediment transport equations for suspended sediment and the bed-load transport equation for bed load.The numerical scheme was validated by experiment results from the Large-scale Sediment Transport Facility at the US Army Corps of Engineer Research and Development Center in Vicksburg.The numerical results showed that the present scheme is an effective tool for modeling coastal sediment transport in waves and near-shore currents.
基金the National Natural Science Foundation of Chinathe Yellow River Conservancy Commission (Grant No. 50339020).
文摘A set of new 2-D equations of interchange between suspended sediment and bed materials was serived by theoretical deduction based on the systematic summarization and assessment the previous studies of simulating the interchange between suspended sediment and bed materials in the Lower Yellow River. This model was used to simulate the erosion and deposition processes caused by the interchange between suspended sediment and bed materials in a sketch channel. The results show that these equations are well consistent with the laws of interchange between suspended sediment and bed materials. Furthermore, compared with previous models, it has important practical value not only because of strong theoretical foundation, but also for smaller amount of calculating work and convenient application in practice.
基金Supported by the National Natural Science Foundation of China (Grant No.40476039)
文摘The suspended sediment transport equation and its near-bed sediment flux are one of the key problems of sediment transport research under nonequilibrium condition. Based on the three-dimensional primitive suspended transport equation, the two-dimensional suspended sediment transport equation is deduced. The derived process indicates that the physical essence of the near-bed sediment flux is right the bottom boundary condition for the suspended sediment transport equation. This paper analyzes the internal relations between the two methods of sediment carrying capacity and shear stress in common use, points out the consistency of these two methods in terms of form and physical meaning, and unifies these two methods theoretically. Furthermore, based on the analysis and comparison of the expressions of the near-bed sediment flux, this paper summarizes some problems to which attention should be paid, thus offering a novel approach to the study and the solution of the problems of suspended sediment transport and exchange flux of near-bed water sediment.
基金funded by Natural Science Foundation of China (Grants Nos. 11172217, 10932012 and 10972164)
文摘Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.
文摘Liquefied Natural Gas (LNG) port is located at Abu Qir Bay on the northwestern coast of the Nile delta, Egypt. The port was constructed in 2004 to export liquefied natural gas worldwide. The offshore basins of this port including the turning and berthing areas (15-m depth) are connected to the deep water by a 15-m depth dredged channel that extends 4 km offshore. However, the navigation channel and its contiguous basins have experienced problematic shoaling that might affect the navigation activities of gas tankers. Sedimentation processes have been investigated by analyses of waves, currents, bathymetry, grain size of seabed and channel dimensions. Sedimentation rates are estimated using a developed numerical model. Sedimentation rate fluctuates between 0.048 × 106 m3/month and 0.388 × 106 m3/month, with an annual sedimentation rate of 1.977 × 106 m3/yr. The variance in the sedimentation rates between winter and summer resulted in increasing of current speed and direction flowing towards offshore. The sedimentation process is influenced by the temporal variability in the direction and intensity of the predominant waves, currents, orientation of navigation channel, basin breakwaters, seafloor morphology and sediment sources. Due to the geographic location of LNG port it lays within a sediment sink for sediments supplied from different alternating directions by several pathways, flowing towards the N-W, S-W, N-E, and S-E quadrants. Most of these currents components are substantially effective in transporting fine-grained sediment towards the navigation channel axis and contiguous basins. Together with these currents, the predominant NW and SE waves acting to agitate and stirrup sediments in the vicinity of the port, and thereby accelerating sedimentation rates.
基金supported by the National Natural Science Foundation of China (Grant No. 50879006)
文摘Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.
基金Ministry of Water Resources,Government of India,No.28/1/2016-R&D/228–245。
文摘Given the challenges of re-creating complex bed load(BL)transport processes in rivers,models are preferred over gathering and examining field data.The highlight of the present research is to develop an approach to determine the ungauged bed load concentration(BLC_(u))utilizing the measured suspended sediment concentration(SSC)and hydraulic variables of the last four decades for the Mahanadi River Basin.This technique employs shear stress and SSC equations for turbulent open channel flow.Besides,the predicted BLC_(u)is correlated with SSC using a power relation to estimate BLC_(u)on the river and tributaries.Eventually,different BL functions(BLF)efficiency is assessed across stations.The model predicted BLC_(u)is comparable with the published data for sandy rivers and falls within±20%.Outliers in hydraulic and sedimentological statistics significantly influence estimating the BL fraction apart from higher relative ratios and catchment geology.The constants of power functions are physically linked to sediment transport configuration,mechanism,and inflow to the stream.The stream power-based BLF best predicts the BL transport,followed by shear stress and unit discharge approaches.The disparity in the estimation of BLC_(u)results from station-specific physical factors,sampling data dispersion,and associated uncertainties.