期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Dynamics of the outflow and its effect on the hydraulics of two-layer exchange flows in a channel
1
作者 Hesham Fouli David Z. Zhu 《Theoretical & Applied Mechanics Letters》 CAS 2011年第6期26-30,共5页
This paper reports that an experimental study is conducted to examine the dynamics of the outflow in two-layer exchange flows in a channel connecting between two water bodies with a small density difference. The exper... This paper reports that an experimental study is conducted to examine the dynamics of the outflow in two-layer exchange flows in a channel connecting between two water bodies with a small density difference. The experiments reveal the generation of Kelvin-Helmholtz (KH) instabilities within the hydraulically sub-critical flow region of the channel. During maximal exchange, those KH instabilities develops into large-amplitude KH waves as they escape the channel exit into the reservoir. The propagation speed of those waves, their generation frequency and their amplitudes are studied. The dynamics of the outflow and these waves are directly linked to the hydraulic conditions of the exchange flow within the channel. 展开更多
关键词 exchange flows Kelvin-Helmholtz instabilities reservoirs and channel shear waves
下载PDF
A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system 被引量:2
2
作者 Pedram Karimi Pour-Fard Ebrahim Afshari +1 位作者 Masoud Ziaei-Rad Shahed Taghian-Dehaghani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1352-1359,共8页
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e... The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions. 展开更多
关键词 Continuous hydrothermal flow synthesis Heat exchanger Heat transfer enhancement Porous media Numerical simulation
下载PDF
Performance Analysis and Structural Optimization of Torsional Flow Heat Exchangers with Sinusoidal Corrugated Baffle 被引量:3
3
作者 GU Xin SHI Qiming +2 位作者 GAO Wei LI Menghong WANG Dan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期680-691,共12页
The thermal performance of the heat exchanger is strongly influenced by the supporting structure.Corrugated baffle enhances flow field disturbance and heat transfer through its complex and changeable flow channel.In o... The thermal performance of the heat exchanger is strongly influenced by the supporting structure.Corrugated baffle enhances flow field disturbance and heat transfer through its complex and changeable flow channel.In order to enhance the thermal performance of the torsional flow heat exchanger(TFHX),the sinusoidal corrugated baffle(SCB)is used to replace the flat baffle(FB)and the full-section cycle model of the torsional flow heat exchanger with sinusoidal corrugated baffle(TFHX-SCB)is established.Computational fluid dynamics(CFD)method was used to discuss the flow resistance characteristics of the shell-side of heat exchangers.The results show that the SCB can improve the turbulence intensity and the uniformity of the flow field between the adjacent baffles.The combination of structural configurations on the shell-side of TFHX-SCB is analyzed by the central composite design(CCD)-response surface method(RSM).When the amplitude of the SCB is 1.37 mm,the cycles of the SCB are 4.42;the initial phase of the SCB is 112.73°,and the combination of heat transfer coefficient and comprehensive performance is optimal.Compared with the original structure,the heat transfer coefficient is increased by 11.58%,and the comprehensive performance is increased by 5.48%.The laser doppler velocimetry(LDV)experimental device irradiated the specified measurement point,and the dependability and accuracy of numerical simulation methods were verified.The research conclusion provides a basic theory for the structural development of the TFHX. 展开更多
关键词 sinusoidal corrugated baffle torsional flow heat exchanger response surface method heat transfer enhancement
原文传递
Weather Induced Quasi-Periodic Motions in Estuaries and Bays:Meteoro-logical Tide 被引量:2
4
作者 LI Chun-yan HUANG Wei +1 位作者 WU Ren-hao Alex SHEREMET 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期299-313,共15页
Influenced by weather, the estuaries and bays often exhibit recurring oscillations in flow and water level similar to astronomical tides. The weather impact however is less regular than tides and more difficult to pre... Influenced by weather, the estuaries and bays often exhibit recurring oscillations in flow and water level similar to astronomical tides. The weather impact however is less regular than tides and more difficult to predict. The spectrum of weather induced motions in estuaries and bays is mostly at the low-frequency end with time scales longer than those of diurnal tides. The repeated weather impact produces meteorological tide: the recurring flood and ebb and flushing of the estuaries and bays but at lower frequencies than those of tides. The variation in weather conditions is quasi-periodic and of large scale nature(~1000-3000 km) because of the alternating low-and high-atmospheric pressure systems of extra-tropical cyclones and anti-cyclones and associated fronts. By examining 40 years of data between Jan. 1, 1977 and Dec. 31, 2016, we identified 1648 frontal events(averaging ~41.2±4.7 per year)influencing the northern Gulf of Mexico for time periods in the spring, fall and winter. The late spring and summer months(May, Jun, July, and August) were not included in the calculation because of much weaker activities involving synoptic weather systems with fronts during these months. It is found that the number of frontal events reached the maximum in Jan. and Dec. while the minimum occurred in April and Sept. It is found that there is an increasing trend of number of fronts over the 40-year period. Our data show that the low pass filtered water level,velocity, and vorticity(velocity shear) all vary in response to the weather and appear as the meteorological tide. The particle excursions of meteorological tides are much larger than those from the astronomical tides. In addition, the irregular nature of the meteorological tide makes the inward flux and outward flux asymmetric in general and thus it has a significant implication to dispersion and transport of waterborne materials. A scaling analysis shows that the meteorological tide generally reaches quasi-steady state;and as a result, a regression model is established which can be very useful for predicting the weather produced quasi-periodic motions. 展开更多
关键词 meteorological tide atmospheric fronts particle excursion quasi-steady state northern Gulf of Mexico estuarine exchange flows
下载PDF
Analysis of interaction between surface and sewer pipe system based on computational fluid dynamics 被引量:2
5
作者 Geng Yanfen Mao Jiandong +1 位作者 Wang Zhili Guo Huaqiang 《Journal of Southeast University(English Edition)》 EI CAS 2020年第2期198-205,共8页
To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the ... To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process. 展开更多
关键词 computational fluid dynamics(CFD) exchange flow rate urban flood model weir and orifice formula
下载PDF
Alteration of estuarine circulation pattern due to channel modification in the North Passage of the Changjiang River Estuary
6
作者 Lei Zhu Xiaodong Chen Zhimo Wu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期162-172,共11页
The exchange flow structure was examined in the North Passage of Changjiang River Estuary,where a deep waterway project(DWP)was carried out to improve the navigability.Before the construction of the DWP,the friction e... The exchange flow structure was examined in the North Passage of Changjiang River Estuary,where a deep waterway project(DWP)was carried out to improve the navigability.Before the construction of the DWP,the friction effect played a significant role in shaping the transverse structure of the exchange flow.The turbulent eddy viscosity generated near the seabed can be transferred to the upper water column,which facilitated vertical momentum exchange.As a result,the landward inflow extended to–2 m below the water surface and the seaward outflow was concentrated on the shallow shoal on the southern side of the cross section.After the construction of the DWP,the turbulent mixing was suppressed as a result of density stratification.The friction felt by the water was constrained in the lower half of the water column and the vertical momentum exchange was reduced.Meanwhile,the channel became dynamically narrowed with a Kelvin number of 0.52.Therefore,the Coriolis played a minor role in shaping the transverse structure of the exchange flow.As a consequence,the exchange flow featured a vertically-sheared pattern,with outflow at the surface and inflow underneath.Additionally,the gravitational circulation was enhanced due to increase in along-channel density gradient and stratification.The exchange flow components associated with the lateral processes(residual currents induced by eddy viscosityshear covariance and lateral advective acceleration)were reduced,which suggests that lateral processes played a minor role in modifying the along-channel dynamics when the estuary becomes dynamically-narrowed. 展开更多
关键词 exchange flow STRATIFICATION lateral circulation Changjiang River Estuary
下载PDF
Spatio-temporal variation in transpiration responses of maize plants to vapor pressure deficit under an arid climatic condition 被引量:4
7
作者 ZHAO Wenzhi JI Xibin 《Journal of Arid Land》 SCIE CSCD 2016年第3期409-421,共13页
The transpiration rate of plant is physically controlled by the magnitude of the vapor pressure deficit(VPD) and stomatal conductance. A limited-transpiration trait has been reported for many crop species in differe... The transpiration rate of plant is physically controlled by the magnitude of the vapor pressure deficit(VPD) and stomatal conductance. A limited-transpiration trait has been reported for many crop species in different environments, including Maize(Zea mays L.). This trait results in restricted transpiration rate under high VPD, and can potentially conserve soil water and thus decrease soil water deficit. However, such a restriction on transpiration rate has never been explored in maize under arid climatic conditions in northwestern China. The objective of this study was to examine the transpiration rate of field-grown maize under well-watered conditions in an arid area at both leaf and whole plant levels, and therefore to investigate how transpiration rate responding to the ambient VPD at different spatial and temporal scales. The transpiration rates of maize at leaf and plant scales were measured independently using a gas exchange system and sapflow instrument, respectively. Results showed significant variations in transpiration responses of maize to VPD among different spatio-temporal scales. A two-phase transpiration response was observed at leaf level with a threshold of 3.5 k Pa while at the whole plant level, the daytime transpiration rate was positively associated with VPD across all measurement data, as was nighttime transpiration response to VPD at both leaf and whole plant level, which showed no definable threshold vapor pressure deficit, above which transpiration rate was restricted. With regard to temporal scale, transpiration was most responsive to VPD at a daily scale, moderately responsive at a half-hourly scale, and least responsive at an instantaneous scale. A similar breakpoint(about 3.0 k Pa) in response of the instantaneous leaf stomatal conductance and hourly canopy bulk conductance to VPD were also observed. At a daily scale, the maximum canopy bulk conductance occurred at a VPD about 1.7 k Pa. Generally, the responsiveness of stomatal conductance to VPD at the canopy scale was lower than that at leaf scale. These results indicate a temporal and spatial heterogeneity in how maize transpiration responses to VPD under arid climatic conditions. This could allow a better assessment of the possible benefits of using the maximum transpiration trait to improve maize drought tolerance in arid environment, and allow a better prediction of plant transpiration which underpin empirical models for stomatal conductance at different spatio-temporal scales in the arid climatic conditions. 展开更多
关键词 maize limited transpiration trait gas exchange sap flow stomatal conductance vapor pressure deficit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部