Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mod...Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mode crosstalk,and high integration.Here,we designed and fabricated a mode exchange device based on multiplane light conversion(MPLC),which supports the transmission of LP01,LP11a,LP11b,and LP21 modes in the C-band and L-band.The simulated exchanged mode purities are greater than 85%.The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems,with an insert loss of less than 2.2 dB and mode crosstalk below-21 dB due primarily to machining inaccuracies and alignment errors.We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device.It paves the way for flexible data exchange as a building block in MDM optical communication networks.展开更多
In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are stu...In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures.展开更多
基金supported by the Guangdong Major Project of Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.U23A20372,61935013,62105215,and 62275171)+3 种基金the Shenzhen Peacock Plan(No.KQTD20170330110444030)the Stable Support Project of Shenzhen(Nos.20220810152651001 and 20220811103827001)the Natural Science Foundation of GuangdongProvince(Nos.2020A1515011185and 2022A1515011642)Shenzhen University(No.2019075)。
文摘Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mode crosstalk,and high integration.Here,we designed and fabricated a mode exchange device based on multiplane light conversion(MPLC),which supports the transmission of LP01,LP11a,LP11b,and LP21 modes in the C-band and L-band.The simulated exchanged mode purities are greater than 85%.The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems,with an insert loss of less than 2.2 dB and mode crosstalk below-21 dB due primarily to machining inaccuracies and alignment errors.We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device.It paves the way for flexible data exchange as a building block in MDM optical communication networks.
基金the financial support of National Natural Science Foundation of China through grant nos.11872127,11832002,11732005Qin Xin Talents Cultivation ProgramBeijing Information Science&Technology University QXTCP A201901。
文摘In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures.