A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3...A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3+ doped glass. Finite difference method with full-vectorial formulation (FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time. The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions. Hybrid nature of vectorial guided modes for both pump (980 nm) and signal light (1550 nm) are demonstrated by the simulation. Results show that the fabrication parameters of ion exchange, such as channel opening width and time ratio of second step to first step in ion exchange, have large influence on the properties of waveguide. By optimizing the fabrication parameters, maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er^3+ doped waveguide amplifier (EDWA) fabricated by ion exchange technique. This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique. Furthermore, a single polarization EDWA, which operates at wavelength from 1528 nm to 1541 nm for HE polarization, is numerically designed.展开更多
This paper presents an energy analysis of a counter-flow plate heat exchanger operating in stationary mode. The exchanger comprises a rectangular plate of which we vary the heat transfer surface (by fixing its width a...This paper presents an energy analysis of a counter-flow plate heat exchanger operating in stationary mode. The exchanger comprises a rectangular plate of which we vary the heat transfer surface (by fixing its width and varying its length) and analyze the evolution of some parameters as a function of this heat transfer surface. The parameters to be analyzed are the NTU (number of transfer units), the effectiveness, the temperatures of both primary and secondary fluids and the heat flux. The analysis carried out will help understand the behavior of the counter-flow plate heat exchanger operating in stationary mode. Then, the heat transfer surface of the exchanger is determined for the sizing of a counter-flow plate heat exchanger intended to produce hot air for drying. That plate heat exchanger uses water vapor heated by geothermal energy as a primary fluid and atmospheric air as a secondary fluid. The products to be dried are onions with a mass flow of water to be evacuated of 100 kg/h.展开更多
Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mod...Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mode crosstalk,and high integration.Here,we designed and fabricated a mode exchange device based on multiplane light conversion(MPLC),which supports the transmission of LP01,LP11a,LP11b,and LP21 modes in the C-band and L-band.The simulated exchanged mode purities are greater than 85%.The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems,with an insert loss of less than 2.2 dB and mode crosstalk below-21 dB due primarily to machining inaccuracies and alignment errors.We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device.It paves the way for flexible data exchange as a building block in MDM optical communication networks.展开更多
基金supported by the Foundation for Development of Science and Technology of Shanghai (Grant No 022261002)
文摘A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3+ doped glass. Finite difference method with full-vectorial formulation (FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time. The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions. Hybrid nature of vectorial guided modes for both pump (980 nm) and signal light (1550 nm) are demonstrated by the simulation. Results show that the fabrication parameters of ion exchange, such as channel opening width and time ratio of second step to first step in ion exchange, have large influence on the properties of waveguide. By optimizing the fabrication parameters, maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er^3+ doped waveguide amplifier (EDWA) fabricated by ion exchange technique. This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique. Furthermore, a single polarization EDWA, which operates at wavelength from 1528 nm to 1541 nm for HE polarization, is numerically designed.
文摘This paper presents an energy analysis of a counter-flow plate heat exchanger operating in stationary mode. The exchanger comprises a rectangular plate of which we vary the heat transfer surface (by fixing its width and varying its length) and analyze the evolution of some parameters as a function of this heat transfer surface. The parameters to be analyzed are the NTU (number of transfer units), the effectiveness, the temperatures of both primary and secondary fluids and the heat flux. The analysis carried out will help understand the behavior of the counter-flow plate heat exchanger operating in stationary mode. Then, the heat transfer surface of the exchanger is determined for the sizing of a counter-flow plate heat exchanger intended to produce hot air for drying. That plate heat exchanger uses water vapor heated by geothermal energy as a primary fluid and atmospheric air as a secondary fluid. The products to be dried are onions with a mass flow of water to be evacuated of 100 kg/h.
基金supported by the Guangdong Major Project of Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.U23A20372,61935013,62105215,and 62275171)+3 种基金the Shenzhen Peacock Plan(No.KQTD20170330110444030)the Stable Support Project of Shenzhen(Nos.20220810152651001 and 20220811103827001)the Natural Science Foundation of GuangdongProvince(Nos.2020A1515011185and 2022A1515011642)Shenzhen University(No.2019075)。
文摘Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mode crosstalk,and high integration.Here,we designed and fabricated a mode exchange device based on multiplane light conversion(MPLC),which supports the transmission of LP01,LP11a,LP11b,and LP21 modes in the C-band and L-band.The simulated exchanged mode purities are greater than 85%.The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems,with an insert loss of less than 2.2 dB and mode crosstalk below-21 dB due primarily to machining inaccuracies and alignment errors.We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device.It paves the way for flexible data exchange as a building block in MDM optical communication networks.