Compositing soft and hard materials is a promising method to decrease the coercivity of L10 FePt, which is considered to be a suitable material for bit-patterned media. This paper reports the simulation of three model...Compositing soft and hard materials is a promising method to decrease the coercivity of L10 FePt, which is considered to be a suitable material for bit-patterned media. This paper reports the simulation of three models of FeCo/L10 FePt exchange-coupled composite particles for bit patterned media by the OOMMF micromagnetic simulation software: the enclosed model, the side-enclosed model, and the top-covered model. All of them have the same volumes of the soft and hard parts but different shapes. Simulation results show that the switching fields for the three models can be reduced to about 10 kOe (1 Oe = 79.5775 A/m) and the factor gain can be improved to 1.4 when the interface exchange coefficient has a proper value. Compared to the other models, the enclosed model has a wider range of interface exchange coefficient values, in which a low switching field and high gain can be obtained. The dependence of the switching fields on the angle of the applied field shows that none of the three models are easily affected by the stray field of a magnetic head.展开更多
The magnetic properties of exchange coupled composite (ECC) media that are composed of perpendicular magnetic recording media FePt MgO and two kinds of soft layers have been studied by using an x-ray diffractometer,...The magnetic properties of exchange coupled composite (ECC) media that are composed of perpendicular magnetic recording media FePt MgO and two kinds of soft layers have been studied by using an x-ray diffractometer, a polar Kerr magneto-optical system (PMOKE) and a vibrating sample magnetometer (VSM). The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO. The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process, for ECC media of this kind mainly follow the Stoner Wohlfarth model.展开更多
The soft/hard composite patterned media have potential to be the next generation of magnetic recording, but the composing modes of soft and hard materials have not been investigated systematically. L10 FePt-based soft...The soft/hard composite patterned media have potential to be the next generation of magnetic recording, but the composing modes of soft and hard materials have not been investigated systematically. L10 FePt-based soft/hard composite patterned media with an anisotropic constant distribution are studied by micromagnetic simulation. Square arrays and hexagonal arrays with various pitch sizes are simulated for two composing types: the soft layer that encloses the hard dots and the soft layer that covers the whole surface. It is found that the soft material can reduce the switching fields of bits effectively for all models. Compared with the first type, the second type of models possess low switching fields, narrow switching field distributions, and high gain factors due to the introduction of inter-bit exchange coupling. Furthermore, the readout waveforms of the second type are not deteriorated by the inter-bit soft layers. Since the recording density of hexagonal arrays are higher than that of square arrays with the same center-to-center distances, the readout waveforrns of hexagonal arrays are a little worse, although other simulation results are similar for these two arrays.展开更多
A study on free harmonic wave propagation in a double-walled cylindrical shell, whose walls sandwich a layer of porous materials, is presented within the framework of the classic theory for laminated composite shells....A study on free harmonic wave propagation in a double-walled cylindrical shell, whose walls sandwich a layer of porous materials, is presented within the framework of the classic theory for laminated composite shells. One of the most effective components of the wave propagation through the porous core is estimated with the aid of a flat panel with the same geometrical properties. By considering the effective wave component, the porous layer is modeled as a fluid with equivalent properties. Thus, the model is simplified as a double-walled cylindrical shell trapping the fluid media. Finally, the transmission loss (TL) of the structure is estimated in a broadband frequency, and then the results are compared.展开更多
Combining the linear transformation and the solution technique for the cubic equation, a general closed-form analytic solution for bulk waves in orthotropic anisotropic materials is obtained. This method is straightfo...Combining the linear transformation and the solution technique for the cubic equation, a general closed-form analytic solution for bulk waves in orthotropic anisotropic materials is obtained. This method is straightforward and general. Degenerated cases include transversely isotropic, cubic, and isotropic materials. Numerical computations are carried out on a fiber-reinforced composite plate modeled as a transversely isotropic media. The fibers are parallel to the top and bottom surfaces of the plate, and they are rotated counterclockwise around the plate normal through different angles. The two-dimensional slowness curves corresponding to different rotations are presented graphically. The wave propagation characteristics displayed in slowness surfaces for different fiber orientation are analyzed. Key words composite material - anisotropic media - wave propagation - slowness PASC 2001 0343.8 - 042 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 03AK48)展开更多
Medicinal plants provide an important source of cure since ancient time. Poor soil resources, scarce and saline water and the harsh environment limited the production of plants in the Arabian Gulf countries. This stud...Medicinal plants provide an important source of cure since ancient time. Poor soil resources, scarce and saline water and the harsh environment limited the production of plants in the Arabian Gulf countries. This study aimed to investigate the production potential of rosemary (Rosmarinus officinalis L.) grown on different growth media under greenhouse conditions. Three growth media agricultural soil, compost and hydroponic system were used, whereas tuff (inert volcanic material) was used as substrate. The result indicated that the high salinity of the agricultural soil limited growth and oil yield in rosemary. Shoot height increased in 11 weeks, by 62%, 65% and 114% in plants grown in agricultural soil, hydroponic system and compost, respectively. Na content in plants grown in agricultural soil was significantly higher than in plants grown in the other treatment. Essential oil yield in plants grown in compost exceeded those in agricultural soil by 114%. Essential oil content (0.66%-1.5% w/w) and chemical constituents concentrations did not change significantly with growth media. The main constituents, more or less, are comparable to essential oils constituents reported from other countries. In comparison, better yields are obtained for individual components of the oils of plants grown under our green house conditions. This study demonstrated the great potential of commercial production of rosemary in the greenhouse without compromising the oil quality and oil yield.展开更多
The technology of hot composite foam displacement refers to the injection of high-temperature flue gas and foaming and stabilizing agent into wells with a certain concentration, and after meeting the formation water, ...The technology of hot composite foam displacement refers to the injection of high-temperature flue gas and foaming and stabilizing agent into wells with a certain concentration, and after meeting the formation water, a composite foam system is formed in the reservoir. This foam displacement technology involves thermal function and so is related to nitrogen, carbon dioxide and foam flooding characteristics. After analyzing seepage flow law of hot composite foam system, seepage flow experiment of composite foam under high pressure was conducted, and seepage flow ability of hot composite foam in porous media was investigated. In the experiment, surfactant HY-3 was chosen as the foaming agent and hot flue gas was chosen as the foaming gas, and high-pressure hot foaming apparatus was employed in experiments. The experimental results indicate that the surfactant HY-3 could form stable foam in porous media, and the foam has strong ability of plugging. It is concluded that the sealing performance of foam is improved with increasing permeability and resistance coefficient and with incresing injection rate and foam strength. After foam injection, sealing characteristics of heterogeneous cores is better than that of homogeneous cores. The foam pressure has a process of transmission in porous media. In this process, with the increase of injection volume, pressure from the inlet to the outlet increases gradually, which indicates that stable foam has been formed inside the core.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 61003041,51171086,and 61272076)the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2010-81)
文摘Compositing soft and hard materials is a promising method to decrease the coercivity of L10 FePt, which is considered to be a suitable material for bit-patterned media. This paper reports the simulation of three models of FeCo/L10 FePt exchange-coupled composite particles for bit patterned media by the OOMMF micromagnetic simulation software: the enclosed model, the side-enclosed model, and the top-covered model. All of them have the same volumes of the soft and hard parts but different shapes. Simulation results show that the switching fields for the three models can be reduced to about 10 kOe (1 Oe = 79.5775 A/m) and the factor gain can be improved to 1.4 when the interface exchange coefficient has a proper value. Compared to the other models, the enclosed model has a wider range of interface exchange coefficient values, in which a low switching field and high gain can be obtained. The dependence of the switching fields on the angle of the applied field shows that none of the three models are easily affected by the stray field of a magnetic head.
基金Project supported by the Japanese Storage Research Consortium (SRC)the Grant-in-Aid for Scientific Research (A) of the Japanese Ministry of Education, Culture, Sports, Science and Technology (Grant No 14205049)
文摘The magnetic properties of exchange coupled composite (ECC) media that are composed of perpendicular magnetic recording media FePt MgO and two kinds of soft layers have been studied by using an x-ray diffractometer, a polar Kerr magneto-optical system (PMOKE) and a vibrating sample magnetometer (VSM). The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO. The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process, for ECC media of this kind mainly follow the Stoner Wohlfarth model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51171086 and 61272076)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61003041)
文摘The soft/hard composite patterned media have potential to be the next generation of magnetic recording, but the composing modes of soft and hard materials have not been investigated systematically. L10 FePt-based soft/hard composite patterned media with an anisotropic constant distribution are studied by micromagnetic simulation. Square arrays and hexagonal arrays with various pitch sizes are simulated for two composing types: the soft layer that encloses the hard dots and the soft layer that covers the whole surface. It is found that the soft material can reduce the switching fields of bits effectively for all models. Compared with the first type, the second type of models possess low switching fields, narrow switching field distributions, and high gain factors due to the introduction of inter-bit exchange coupling. Furthermore, the readout waveforms of the second type are not deteriorated by the inter-bit soft layers. Since the recording density of hexagonal arrays are higher than that of square arrays with the same center-to-center distances, the readout waveforrns of hexagonal arrays are a little worse, although other simulation results are similar for these two arrays.
文摘A study on free harmonic wave propagation in a double-walled cylindrical shell, whose walls sandwich a layer of porous materials, is presented within the framework of the classic theory for laminated composite shells. One of the most effective components of the wave propagation through the porous core is estimated with the aid of a flat panel with the same geometrical properties. By considering the effective wave component, the porous layer is modeled as a fluid with equivalent properties. Thus, the model is simplified as a double-walled cylindrical shell trapping the fluid media. Finally, the transmission loss (TL) of the structure is estimated in a broadband frequency, and then the results are compared.
文摘Combining the linear transformation and the solution technique for the cubic equation, a general closed-form analytic solution for bulk waves in orthotropic anisotropic materials is obtained. This method is straightforward and general. Degenerated cases include transversely isotropic, cubic, and isotropic materials. Numerical computations are carried out on a fiber-reinforced composite plate modeled as a transversely isotropic media. The fibers are parallel to the top and bottom surfaces of the plate, and they are rotated counterclockwise around the plate normal through different angles. The two-dimensional slowness curves corresponding to different rotations are presented graphically. The wave propagation characteristics displayed in slowness surfaces for different fiber orientation are analyzed. Key words composite material - anisotropic media - wave propagation - slowness PASC 2001 0343.8 - 042 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 03AK48)
文摘Medicinal plants provide an important source of cure since ancient time. Poor soil resources, scarce and saline water and the harsh environment limited the production of plants in the Arabian Gulf countries. This study aimed to investigate the production potential of rosemary (Rosmarinus officinalis L.) grown on different growth media under greenhouse conditions. Three growth media agricultural soil, compost and hydroponic system were used, whereas tuff (inert volcanic material) was used as substrate. The result indicated that the high salinity of the agricultural soil limited growth and oil yield in rosemary. Shoot height increased in 11 weeks, by 62%, 65% and 114% in plants grown in agricultural soil, hydroponic system and compost, respectively. Na content in plants grown in agricultural soil was significantly higher than in plants grown in the other treatment. Essential oil yield in plants grown in compost exceeded those in agricultural soil by 114%. Essential oil content (0.66%-1.5% w/w) and chemical constituents concentrations did not change significantly with growth media. The main constituents, more or less, are comparable to essential oils constituents reported from other countries. In comparison, better yields are obtained for individual components of the oils of plants grown under our green house conditions. This study demonstrated the great potential of commercial production of rosemary in the greenhouse without compromising the oil quality and oil yield.
基金supported by the Important National Science and Technology Specific Project of China (Grant No.2008ZX05009-004-01)the Scientific and Technological Innovation Research Team Program of Heilongjiang Education Department (Grant No.2009td08)
文摘The technology of hot composite foam displacement refers to the injection of high-temperature flue gas and foaming and stabilizing agent into wells with a certain concentration, and after meeting the formation water, a composite foam system is formed in the reservoir. This foam displacement technology involves thermal function and so is related to nitrogen, carbon dioxide and foam flooding characteristics. After analyzing seepage flow law of hot composite foam system, seepage flow experiment of composite foam under high pressure was conducted, and seepage flow ability of hot composite foam in porous media was investigated. In the experiment, surfactant HY-3 was chosen as the foaming agent and hot flue gas was chosen as the foaming gas, and high-pressure hot foaming apparatus was employed in experiments. The experimental results indicate that the surfactant HY-3 could form stable foam in porous media, and the foam has strong ability of plugging. It is concluded that the sealing performance of foam is improved with increasing permeability and resistance coefficient and with incresing injection rate and foam strength. After foam injection, sealing characteristics of heterogeneous cores is better than that of homogeneous cores. The foam pressure has a process of transmission in porous media. In this process, with the increase of injection volume, pressure from the inlet to the outlet increases gradually, which indicates that stable foam has been formed inside the core.