The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition o...The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition of the total excitation energy between the fission fragments for the nth+233U fission reactions is determined by the available experimental and evaluation data. The calculated prompt fission neutron spectra agree well with the experimental data. The proportions of high-energy neutrons of prompt fission neutron spectrum versus incident neutron energies are investigated with the theoretical spectra, and the results are consistent with the systematics. The semi-empirical method could be a useful tool for the prompt evaluation of fission neutron spectra.展开更多
For the n+235U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy ε (A) and the total average energies Eˉγ(A) removed by γ rays as a function ...For the n+235U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy ε (A) and the total average energies Eˉγ(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of 235U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities νˉ and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.展开更多
基金Supported by National Natural Science Foundation of China(11205246,91126010,91226102)
文摘The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition of the total excitation energy between the fission fragments for the nth+233U fission reactions is determined by the available experimental and evaluation data. The calculated prompt fission neutron spectra agree well with the experimental data. The proportions of high-energy neutrons of prompt fission neutron spectrum versus incident neutron energies are investigated with the theoretical spectra, and the results are consistent with the systematics. The semi-empirical method could be a useful tool for the prompt evaluation of fission neutron spectra.
文摘For the n+235U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy ε (A) and the total average energies Eˉγ(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of 235U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities νˉ and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.