The quality as well as reliability of electrical energy transmitted to consumers is one of the main parameters of successful operation of the power system. The searching of optimal coefficient's combination of PSS (...The quality as well as reliability of electrical energy transmitted to consumers is one of the main parameters of successful operation of the power system. The searching of optimal coefficient's combination of PSS (power system stabilizer) is the main goal of this article. The possibility of application of the new combined approach for the optimal excitation's settings search is presented. MC (Monte Carlo) method, in order to search and select the optimal combination of excitation system, was applied. The proposed method has been researched with a mathematical model of the power system. This model has been built using Matlab/Simulink software. Paper shows advantages and disadvantages of the proposed methods.展开更多
Electron inelastic mean free path (IMFP) is an important parameter for surface chemical quantification by surface electron spectroscopy techniques. It can be obtained from analysis of elastic peak electron spectrosc...Electron inelastic mean free path (IMFP) is an important parameter for surface chemical quantification by surface electron spectroscopy techniques. It can be obtained from analysis of elastic peak electron spectroscopy (EPES) spectra measured on samples and a Monte Carlo simulation method. To obtain IMFP parameters with high accuracy, the surface excitation effect on the measured EPES spectra has to be quantified as a surface excitation parameter (SEP), which can be calculated via a dielectric response theory. However, such calculated SEP does not include influence of elastic scattering of electrons inside samples during their incidence and emission processes, which should not be neglected simply in determining IMFP by an EPES method. In this work a Monte Carlo simulation method is employed to determine surface excitation parameter by taking account of the elastic scattering effect. The simulated SEPs for different primary energies are found to be in good agreement with the experiments particularly for larger incident or emission angles above 60° where the elastic scattering effect plays a more important role than those in smaller incident or emission angles. Based on these new SEPs, the IMFP measurement by EPES technique can provide more accurate data.展开更多
A differential excitation probe based on eddy current testing technology was designed. Sheet specimens of Q 235 steel with prefabricated micro-cracks of different widths and of aluminum with prefabricated micro-cracks...A differential excitation probe based on eddy current testing technology was designed. Sheet specimens of Q 235 steel with prefabricated micro-cracks of different widths and of aluminum with prefabricated micro-cracks of different depths were detected through the designed detection system. The characteristics of micro-cracks can be clearly showed after signals processing through the short-time Fourier transform( STFT). By changing the parameter and its value in detecting process,the factors including the excitation frequency and amplitude,the lift-off effect and the scanning direction were discussed,respectively. The results showed that the differential excitation probe was insensitive to dimension and surface state of the tested specimen,while it had a high degree of recognition for micro-crack detection. Therefore,when the differential excitation detection technology was used for inspecting micro-crack of turbine blade in aero-engine,and smoothed pseudo Wigner-Ville distribution was used for signal processing,micro-cracks of 0. 3 mm depth and 0. 1 mm width could be identified. The experimental results might be useful for further research on engineering test of turbine blades of aero-engine.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
The investigation of influence of surface effects on the energy spectra of elect rons is essential for comprehensive understanding of electron-solid interactions as well as quantitative analysis. The accuracy of the a...The investigation of influence of surface effects on the energy spectra of elect rons is essential for comprehensive understanding of electron-solid interactions as well as quantitative analysis. The accuracy of the analysis depends on the m odels for elastic and inelastic interactions. Electrons impinging on a solid or escaping from it suffer losses in the surface layer. The energy loss spectra the refore have contributions from surface excitations. The role of surface excitati ons is characterized by surface excitation parameter (SEP), which indicates the number of surface plasmons created by an electron crossing the surface. The imag inary part of complex self-energy of an electron is related to the energy loss c ross section. SEP is numerically computed using self-energy formalism and compar ed with the results as described and calculated by different workers.展开更多
The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been ...The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.展开更多
We establish a system to measure the functional absorption cross section of photosystem lI (PSII) (O-PSII) and maximum quantum yield of photochemistry in PSII (Fv/Fm). The system utilizes a sequence of high-freq...We establish a system to measure the functional absorption cross section of photosystem lI (PSII) (O-PSII) and maximum quantum yield of photochemistry in PSII (Fv/Fm). The system utilizes a sequence of high-frequency excitation flashes at microsecond intervals to induce a microsecond-level fluorescence yield curve. Parameters o-Psii and Fv/Fm are calculated by fitting the curve using nonlinear regression. Experimental results show that the relative standard deviation (RSD) of the system is less than 3%, and the correlation coefficient of Fv/Fm values measured by this system and those measured by pulse amplitude modulation method is 0.950.展开更多
Coded excitation technology (CET) can effectively enhance the penetration and resolution of ultrasonic testing. To analyze the influence of rock properties on pulse compression performance (PCP) of coded excitatio...Coded excitation technology (CET) can effectively enhance the penetration and resolution of ultrasonic testing. To analyze the influence of rock properties on pulse compression performance (PCP) of coded excitation signals (CES), a numerical simulation, and an ultrasonic experiment on different rock samples are performed; and the detection ability of several CESs are also investigated and compared. The results of experiments showed that the loss of the signal-to-noise ratio (SNR) of Barker coded signal with tapered linear frequency modulated carrier (BTLFM) is always less than Barker coded signal with sine carrier (BS), while the resolution loss of BTLFM is lower than tapered linear frequency modulated signal (TLFM). In sum, the results not only verifiy the effectiveness of CET, but also provide a basis for the parameter settings of coded signals used in rock ultrasonic testing.展开更多
It is difficult to obtain analytic approximations of nonlinear problems such as parameter excited system with strong nonlinearity. An analytic approach based on the homotopy analysis method( HAM) is proposed to study ...It is difficult to obtain analytic approximations of nonlinear problems such as parameter excited system with strong nonlinearity. An analytic approach based on the homotopy analysis method( HAM) is proposed to study the sub-harmonic resonances of highly nonlinear parameter excited oscillating systems with absolute value terms. The non-smoothness of absolute value terms is handled by means of an iteration approach with Fourier expansion. Two typical examples are employed to illustrate the validity and flexibility of this approach. The square residuals of the homotopy-approximations of the two examples decrease to 10-6and 10-5,respectively. Thus,the HAM combining with other methods gives hope to solve complex singular oscillating systems analytically.展开更多
In this paper, the incremental harmonic balance nonlinear identification (IHBNID) is presented for modelling and parametric identification of nonlinear systems. The effects of harmonic balance nonlinear identification...In this paper, the incremental harmonic balance nonlinear identification (IHBNID) is presented for modelling and parametric identification of nonlinear systems. The effects of harmonic balance nonlinear identification (HBNID) and IHBNID are also studied and compared by using numerical simulation. The effectiveness of the IHBNID is verified through the Mathieu-Duffing equation as an example. With the aid of the new method, the derivation procedure of the incremental harmonic balance method is simplified. The system responses can be represented by the Fourier series expansion in complex form. By keeping several lower-order primary harmonic coefficients to be constant, some of the higher-order harmonic coefficients can be self-adaptive in accordance with the residual errors. The results show that the IHBNID is highly efficient for computation, and excels the HBNID in terms of computation accuracy and noise resistance.展开更多
文摘The quality as well as reliability of electrical energy transmitted to consumers is one of the main parameters of successful operation of the power system. The searching of optimal coefficient's combination of PSS (power system stabilizer) is the main goal of this article. The possibility of application of the new combined approach for the optimal excitation's settings search is presented. MC (Monte Carlo) method, in order to search and select the optimal combination of excitation system, was applied. The proposed method has been researched with a mathematical model of the power system. This model has been built using Matlab/Simulink software. Paper shows advantages and disadvantages of the proposed methods.
基金This work was supported by the National Natural Science Foundation of China (No.11274288 and No.11574289). We thank the Supercomputing Center of USTC for support in performing parallel computations.
文摘Electron inelastic mean free path (IMFP) is an important parameter for surface chemical quantification by surface electron spectroscopy techniques. It can be obtained from analysis of elastic peak electron spectroscopy (EPES) spectra measured on samples and a Monte Carlo simulation method. To obtain IMFP parameters with high accuracy, the surface excitation effect on the measured EPES spectra has to be quantified as a surface excitation parameter (SEP), which can be calculated via a dielectric response theory. However, such calculated SEP does not include influence of elastic scattering of electrons inside samples during their incidence and emission processes, which should not be neglected simply in determining IMFP by an EPES method. In this work a Monte Carlo simulation method is employed to determine surface excitation parameter by taking account of the elastic scattering effect. The simulated SEPs for different primary energies are found to be in good agreement with the experiments particularly for larger incident or emission angles above 60° where the elastic scattering effect plays a more important role than those in smaller incident or emission angles. Based on these new SEPs, the IMFP measurement by EPES technique can provide more accurate data.
基金Supported by the Ministerial Level Advanced Research Foundation(051317030586)Ph.D.Programs Foundation of the Ministry of Education of China(20121101110018)
文摘A differential excitation probe based on eddy current testing technology was designed. Sheet specimens of Q 235 steel with prefabricated micro-cracks of different widths and of aluminum with prefabricated micro-cracks of different depths were detected through the designed detection system. The characteristics of micro-cracks can be clearly showed after signals processing through the short-time Fourier transform( STFT). By changing the parameter and its value in detecting process,the factors including the excitation frequency and amplitude,the lift-off effect and the scanning direction were discussed,respectively. The results showed that the differential excitation probe was insensitive to dimension and surface state of the tested specimen,while it had a high degree of recognition for micro-crack detection. Therefore,when the differential excitation detection technology was used for inspecting micro-crack of turbine blade in aero-engine,and smoothed pseudo Wigner-Ville distribution was used for signal processing,micro-cracks of 0. 3 mm depth and 0. 1 mm width could be identified. The experimental results might be useful for further research on engineering test of turbine blades of aero-engine.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
基金This work was supported by the National Natural Science Foundation of China(No.10025420,and No.90206009).
文摘The investigation of influence of surface effects on the energy spectra of elect rons is essential for comprehensive understanding of electron-solid interactions as well as quantitative analysis. The accuracy of the analysis depends on the m odels for elastic and inelastic interactions. Electrons impinging on a solid or escaping from it suffer losses in the surface layer. The energy loss spectra the refore have contributions from surface excitations. The role of surface excitati ons is characterized by surface excitation parameter (SEP), which indicates the number of surface plasmons created by an electron crossing the surface. The imag inary part of complex self-energy of an electron is related to the energy loss c ross section. SEP is numerically computed using self-energy formalism and compar ed with the results as described and calculated by different workers.
基金Project supported by the National Natural Science Foundation of Shandong Province(No.ZR2013AL017)the National Natural Science Foundation of China(No.11272357)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A)
文摘The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.
基金the Natural Science Foundation of Anhui Province(No.1408085MD72)the National"863"Program of China(Nos.2014AA06A509,2013AA065502,and 2009AA063005)+2 种基金the Science and Technology Planning Project of Anhui Province(No.1206c0805012)the National Natural Science Foundationof China(No.61378041)the Excellent Youth Foundation of Anhui Scientific Committee(No.1108085J19).
文摘We establish a system to measure the functional absorption cross section of photosystem lI (PSII) (O-PSII) and maximum quantum yield of photochemistry in PSII (Fv/Fm). The system utilizes a sequence of high-frequency excitation flashes at microsecond intervals to induce a microsecond-level fluorescence yield curve. Parameters o-Psii and Fv/Fm are calculated by fitting the curve using nonlinear regression. Experimental results show that the relative standard deviation (RSD) of the system is less than 3%, and the correlation coefficient of Fv/Fm values measured by this system and those measured by pulse amplitude modulation method is 0.950.
基金supported by the National Natural Science Foundation of China(41104117)
文摘Coded excitation technology (CET) can effectively enhance the penetration and resolution of ultrasonic testing. To analyze the influence of rock properties on pulse compression performance (PCP) of coded excitation signals (CES), a numerical simulation, and an ultrasonic experiment on different rock samples are performed; and the detection ability of several CESs are also investigated and compared. The results of experiments showed that the loss of the signal-to-noise ratio (SNR) of Barker coded signal with tapered linear frequency modulated carrier (BTLFM) is always less than Barker coded signal with sine carrier (BS), while the resolution loss of BTLFM is lower than tapered linear frequency modulated signal (TLFM). In sum, the results not only verifiy the effectiveness of CET, but also provide a basis for the parameter settings of coded signals used in rock ultrasonic testing.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272209)the State Key Laboratory of Ocean Engineering(Grant No.GKZD010059)
文摘It is difficult to obtain analytic approximations of nonlinear problems such as parameter excited system with strong nonlinearity. An analytic approach based on the homotopy analysis method( HAM) is proposed to study the sub-harmonic resonances of highly nonlinear parameter excited oscillating systems with absolute value terms. The non-smoothness of absolute value terms is handled by means of an iteration approach with Fourier expansion. Two typical examples are employed to illustrate the validity and flexibility of this approach. The square residuals of the homotopy-approximations of the two examples decrease to 10-6and 10-5,respectively. Thus,the HAM combining with other methods gives hope to solve complex singular oscillating systems analytically.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10672141, 10732020, and 11072008)
文摘In this paper, the incremental harmonic balance nonlinear identification (IHBNID) is presented for modelling and parametric identification of nonlinear systems. The effects of harmonic balance nonlinear identification (HBNID) and IHBNID are also studied and compared by using numerical simulation. The effectiveness of the IHBNID is verified through the Mathieu-Duffing equation as an example. With the aid of the new method, the derivation procedure of the incremental harmonic balance method is simplified. The system responses can be represented by the Fourier series expansion in complex form. By keeping several lower-order primary harmonic coefficients to be constant, some of the higher-order harmonic coefficients can be self-adaptive in accordance with the residual errors. The results show that the IHBNID is highly efficient for computation, and excels the HBNID in terms of computation accuracy and noise resistance.