This paper investigates the possibility of utilizing response from natural ice loading for modal parameter identification of real offshore platforms.The test platform is the JZ20-2 MUQ jacket platform located in the L...This paper investigates the possibility of utilizing response from natural ice loading for modal parameter identification of real offshore platforms.The test platform is the JZ20-2 MUQ jacket platform located in the Liaodong Bay,China.A field experiment is carried out in winter season,as the platform is excited by floating ices.The feasibility is demonstrated by the acceleration response of two different segments.By the SSI-data method,the modal frequencies and damping ratios of four structural modes can be successfully identified from both segments.The estimated information from both segments is almost identical,which demonstrates that the modal identification is trustworthy.Furthermore,by taking the Jacket platform as a benchmark,the numerical performance of five popular time-domain EMA methods is systematically compared from different viewpoints.The comparisons are categorized as:(1)stochastic methods versus deterministic methods;(2)high-order methods versus low-order methods;(3)data-driven versus covariance-driven stochastic subspace identification methods.展开更多
As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture...As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture the recoil dynamics of a deep-water riser in an emergency disconnect scenario, researchers typically focus on modelling the influential subsystems (e.g., the tensioner, the mud discharge and seawater refilling process) which can be solved in the preprocessing, and then the determined parameters are transmitted into an existing global riser analysis software. Distinctively, the current study devotes efforts into the coupling effects resulting from that the suspended riser reacts the platform heave motion via the tensioner system in the course of recoil and the discharging fluid column follows the oscillation of the riser in the mud discharge process. Four simulation models are established based on lumped mass method employing different formulas for the top boundary condition of the riser and the discharging flow acceleration. It demonstrates that the coupling effects discussed above can significantly affect the recoil behavior during the transition phase from initial disconnect to the final hang-off state. It is recommended to develop a fully- coupled integrated model for recoil analysis and anti-recoil control system design before extreme deep-water applications.展开更多
The road random torsional excitation is one type of torque rooted from the road roughness and vehicle drive system. This paper aims to study how the road random torsional excitation affects the dynamic characteristics...The road random torsional excitation is one type of torque rooted from the road roughness and vehicle drive system. This paper aims to study how the road random torsional excitation affects the dynamic characteristics of vehicle power train. The method of simulating the random torsional excitation of tracked vehicle is explored at first. Secondly,the road random torsional excitations under different road roughness,vehicle speeds and pre-tensions are obtained. Thirdly,the dynamic analysis model of tracked vehicle power train is constructed with the consideration of the road random torsional excitation. Eventually,the influences of this excitation on output torque,bearing support force,vibration acceleration and dynamic shear stress of transmission shafts are intensively studied.The research conclusions are helpful to correct and refine the present virtual prototype of tracked vehicle power train.展开更多
Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended perio...Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended period.Identifying the modal parameters of offshore platforms is crucial for damage diagno sis,as it serves as a prerequisite and foundation for the process.Therefore,it holds great significance to prioritize the identification of these parameters.Aiming at the shortcomings of the traditional Fast Bayesian Fast Fourier Transform(FBFFT) method,this paper proposes a modal parameter identification method based on Automatic Frequency Domain Decomposition(AFDD) and optimized FBFFT.By introducing the AFDD method and Powell optimization algorithm,this method can automatically identify the initial value of natural frequency and solve the objective function efficiently and simply.In order to verify the feasibility and effectiveness of the proposed method,it is used to identify the modal parameters of the IASC-ASCE benchmark model and the j acket platform structure model,and the Most Probable Value(MPV) of the modal parameters and their respective posterior uncertainties are successfully identified.The identification results of the IASC-ASCE benc hmark model are compared with the identification re sults of the MODE-ID method,which verifies the effectivene ss and accuracy of the proposed method for identifying modal parameters.It provides a simple and feasible method for quantifying the influence of uncertain factors such as environmental parameters on the identification results,and also provide s a reference for modal parameter identification of other large structures.展开更多
In this paper, the jacket platform is simulated by a non-uniform cantilever beam subjected to axial force. Based on the Hamilton theory, the equation of bending motion is developed and solved by the classical Ritz met...In this paper, the jacket platform is simulated by a non-uniform cantilever beam subjected to axial force. Based on the Hamilton theory, the equation of bending motion is developed and solved by the classical Ritz method combined with the pseudo-excitation method for random responses with non-classical damping. Usually, random responses of this continuous structure are obtained by orthogonality of modes, and some normal modes of the structure are needed, causing inconvenience for the analysis of the non-uniform beam whose normal modes are not easy to be obtained. However, if the pseudo-excitation method is extended to calculate random responses by combining it with the classical Ritz method, the responses of a non-uniform beam, such as auto-PSD function, cross-PSD and higher spectral moments, can be solved directly avoiding the calculation of normal modes. The numerical results show that the present method is effective and useful in aseismic design of platforms.展开更多
This paper deals. with the problem of dynamic response of platform-cylinder group foumdation. Dynamic interaction of cylinder group foudation-water-soil is taken into account and the analysis of dynamic response to ex...This paper deals. with the problem of dynamic response of platform-cylinder group foumdation. Dynamic interaction of cylinder group foudation-water-soil is taken into account and the analysis of dynamic response to excitation of water wave force is given by analytic method ..The numerical examples are presented and the influence of systent’s parameters on the dynamic behaviour is discussed.展开更多
基金financially supported by the National Science Fund for Distinguished Young Scholars(Grant No.51625902)the Major Scientific and Technological Innovation Project of Shandong Province(Grant No.2019JZZY010820)+2 种基金the National Key Research and Development Program of China(Grant No.2019YFC0312404)the National Natural Science Foundation of China(Grant No.51879249)the Taishan Scholars Program of Shandong Province(Grant No.TS201511016)。
文摘This paper investigates the possibility of utilizing response from natural ice loading for modal parameter identification of real offshore platforms.The test platform is the JZ20-2 MUQ jacket platform located in the Liaodong Bay,China.A field experiment is carried out in winter season,as the platform is excited by floating ices.The feasibility is demonstrated by the acceleration response of two different segments.By the SSI-data method,the modal frequencies and damping ratios of four structural modes can be successfully identified from both segments.The estimated information from both segments is almost identical,which demonstrates that the modal identification is trustworthy.Furthermore,by taking the Jacket platform as a benchmark,the numerical performance of five popular time-domain EMA methods is systematically compared from different viewpoints.The comparisons are categorized as:(1)stochastic methods versus deterministic methods;(2)high-order methods versus low-order methods;(3)data-driven versus covariance-driven stochastic subspace identification methods.
基金financially supported by the National Natural Science Foundation of China(Grant No.51879161)
文摘As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture the recoil dynamics of a deep-water riser in an emergency disconnect scenario, researchers typically focus on modelling the influential subsystems (e.g., the tensioner, the mud discharge and seawater refilling process) which can be solved in the preprocessing, and then the determined parameters are transmitted into an existing global riser analysis software. Distinctively, the current study devotes efforts into the coupling effects resulting from that the suspended riser reacts the platform heave motion via the tensioner system in the course of recoil and the discharging fluid column follows the oscillation of the riser in the mud discharge process. Four simulation models are established based on lumped mass method employing different formulas for the top boundary condition of the riser and the discharging flow acceleration. It demonstrates that the coupling effects discussed above can significantly affect the recoil behavior during the transition phase from initial disconnect to the final hang-off state. It is recommended to develop a fully- coupled integrated model for recoil analysis and anti-recoil control system design before extreme deep-water applications.
基金National Natural Science Foundations of China(Nos.51405410,51505402)
文摘The road random torsional excitation is one type of torque rooted from the road roughness and vehicle drive system. This paper aims to study how the road random torsional excitation affects the dynamic characteristics of vehicle power train. The method of simulating the random torsional excitation of tracked vehicle is explored at first. Secondly,the road random torsional excitations under different road roughness,vehicle speeds and pre-tensions are obtained. Thirdly,the dynamic analysis model of tracked vehicle power train is constructed with the consideration of the road random torsional excitation. Eventually,the influences of this excitation on output torque,bearing support force,vibration acceleration and dynamic shear stress of transmission shafts are intensively studied.The research conclusions are helpful to correct and refine the present virtual prototype of tracked vehicle power train.
基金financially supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2020E016)the National Natural Science Foundation of China (Grant No.11472076)。
文摘Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended period.Identifying the modal parameters of offshore platforms is crucial for damage diagno sis,as it serves as a prerequisite and foundation for the process.Therefore,it holds great significance to prioritize the identification of these parameters.Aiming at the shortcomings of the traditional Fast Bayesian Fast Fourier Transform(FBFFT) method,this paper proposes a modal parameter identification method based on Automatic Frequency Domain Decomposition(AFDD) and optimized FBFFT.By introducing the AFDD method and Powell optimization algorithm,this method can automatically identify the initial value of natural frequency and solve the objective function efficiently and simply.In order to verify the feasibility and effectiveness of the proposed method,it is used to identify the modal parameters of the IASC-ASCE benchmark model and the j acket platform structure model,and the Most Probable Value(MPV) of the modal parameters and their respective posterior uncertainties are successfully identified.The identification results of the IASC-ASCE benc hmark model are compared with the identification re sults of the MODE-ID method,which verifies the effectivene ss and accuracy of the proposed method for identifying modal parameters.It provides a simple and feasible method for quantifying the influence of uncertain factors such as environmental parameters on the identification results,and also provide s a reference for modal parameter identification of other large structures.
文摘In this paper, the jacket platform is simulated by a non-uniform cantilever beam subjected to axial force. Based on the Hamilton theory, the equation of bending motion is developed and solved by the classical Ritz method combined with the pseudo-excitation method for random responses with non-classical damping. Usually, random responses of this continuous structure are obtained by orthogonality of modes, and some normal modes of the structure are needed, causing inconvenience for the analysis of the non-uniform beam whose normal modes are not easy to be obtained. However, if the pseudo-excitation method is extended to calculate random responses by combining it with the classical Ritz method, the responses of a non-uniform beam, such as auto-PSD function, cross-PSD and higher spectral moments, can be solved directly avoiding the calculation of normal modes. The numerical results show that the present method is effective and useful in aseismic design of platforms.
文摘This paper deals. with the problem of dynamic response of platform-cylinder group foumdation. Dynamic interaction of cylinder group foudation-water-soil is taken into account and the analysis of dynamic response to excitation of water wave force is given by analytic method ..The numerical examples are presented and the influence of systent’s parameters on the dynamic behaviour is discussed.