期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Minority-Carrier Exclusion Effect in Thin-Film SOI Temperature Sensor
1
作者 李斌 黎沛涛 +1 位作者 刘百勇 郑学仁 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第5期461-465,共5页
A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature ca... A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature can reach 550℃ even at a low current of 0.1mA.Experimental results support that the minority-carrier exclusion effect can be strong in the conventional resistor structure when the silicon film is sufficiently thin,thus significantly raising the maximum operating temperature.Moreover,since the structure of the device on thin-film SOI wafer is not crucial in controlling the maximum operating temperature,device layout can be varied according to the requirements of applications. 展开更多
关键词 minority-carrier exclusion effect high temperature sensors spreading resistance SOI
下载PDF
Is the Increment Principle Really Wrong ?
2
作者 Guojie Zhao Yunpeng Shi 《Chinese Business Review》 2005年第10期34-37,共4页
In view of the problems in the selection of alternatives which are mutually exclusive and the criticism against the increment principle, this article reveals the cause of the mistake and demonstrates that only the inc... In view of the problems in the selection of alternatives which are mutually exclusive and the criticism against the increment principle, this article reveals the cause of the mistake and demonstrates that only the increment principle and the incremental analysis method is the principle and method that we should follow and adopt in schematizing the economic policy-making. 展开更多
关键词 the selection of the mutually exclusive alternatives the increment principle maximizing efficiency maximizing effect
下载PDF
Preparation of quasi-isotropic thermal conductive composites by interconnecting spherical alumina and 2D boron nitride flakes 被引量:4
3
作者 Hao-Ting Niu Yi Zhang +2 位作者 Guang Xiao Xu-Hua He Ya-Gang Yao 《Rare Metals》 SCIE EI CAS CSCD 2023年第4期1283-1293,共11页
Achieving thermal management composite material with isotropic thermal dissipation property by using an environmentally friendly and efficient method is one of the most challenging techniques as a traditional approach... Achieving thermal management composite material with isotropic thermal dissipation property by using an environmentally friendly and efficient method is one of the most challenging techniques as a traditional approach tending to form a horizontally arranged network within the polymer matrix or the preparation steps which are unduly cumbersome.What presented here is a closestack thermally conductive three-dimensional(3D)hybrid network structure prepared by a simple and green strategy that intercalating the modified aluminum oxide(m-Al_(2)O_(3))spheres of different sizes into the modified two-dimensional(2D)boron nitride(m-h-BN)flakes.An effective 3D network is created by the multi-dimensional fillers through volume exclusion and synergistic effects.The m-h-BN flakes facilitate in-plane heat transfer,while the variously sized m-Al_(2)O_(3)spheres insert into the gaps between adjacent m-h-BN flakes,which is conducive to the heat transfer in the out-of-plane direction.Additionally,strong interactions between the m-Al_(2)O_(3)and m-h-BN promote the effective heat flux inside the 3D hybrid network structure.The 3D hybrid composite displays favorable quasi-isotropic heat dissipation property(through-plane thermal conductivity of 2.2 W·m^(-1)·K^(-1)and in-plane thermal conductivity of 11.6 W·m^(-1)·K^(-1))in comparison with the single-filler composites.Furthermore,the hybrid-filler composite has excellent mechanical properties and thermal stability.The efficient heat dissipation capacity of the hybrid composite is further confirmed by a finite element simulation,which indicates that the sphere-flake hybrid structure possesses a higher thermal conductivity and faster thermal response performance than the single-filler system.The composite material has great potential in meeting the needs of emerging and advancing power systems. 展开更多
关键词 Boron nitride flake Aluminum oxide Thermal management Volume exclusion effect Three-dimensional(3D)hybrid network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部