We investigate the information exclusion principle for multiple measurements with assistance of multiple quantum memories that are well bounded by the upper and lower bounds.The lower bound depends on the observables&...We investigate the information exclusion principle for multiple measurements with assistance of multiple quantum memories that are well bounded by the upper and lower bounds.The lower bound depends on the observables'complementarity and the complementarity of uncertainty whilst the upper bound includes the complementarity of the observables,quantum discord,and quantum condition entropy.In quantum measurement processing,there exists a relationship between the complementarity of uncertainty and the complementarity of information.In addition,based on the information exclusion principle the complementarity of uncertainty and the shareability of quantum discord can exist as an essential factor to enhance the bounds of each other in the presence of quantum memory.展开更多
In view of the problems in the selection of alternatives which are mutually exclusive and the criticism against the increment principle, this article reveals the cause of the mistake and demonstrates that only the inc...In view of the problems in the selection of alternatives which are mutually exclusive and the criticism against the increment principle, this article reveals the cause of the mistake and demonstrates that only the increment principle and the incremental analysis method is the principle and method that we should follow and adopt in schematizing the economic policy-making.展开更多
We all physicist have long been believed that an elementary particle is a wave as well as a particle, but we discuss in this paper that an electron (probably all fermions) is always a particle. Author claim that quant...We all physicist have long been believed that an elementary particle is a wave as well as a particle, but we discuss in this paper that an electron (probably all fermions) is always a particle. Author claim that quantum mechanics (QM) is not such mysterious as Bohr stated that the wave turn to the particle by observation. We can understand QM by natural human sense. The wave nature of electrons is only an appearance or a phenomena but not intrinsic or substantial. An electron is an individual body, which interferes with other individual electrons. Interference is the key word instead of the wave to understand the quantum mechanics. Interference produces the wave nature and the uncertainty. When we determine that an electron is nothing but a particle, we will see the true meaning of wave function and the Schr?dinger’s equation.展开更多
The mechanism of addition of separate atoms to a growing center is considered with application of model of a pair interpenetration of atoms. Features of geometrical model are related with the electronic structure of a...The mechanism of addition of separate atoms to a growing center is considered with application of model of a pair interpenetration of atoms. Features of geometrical model are related with the electronic structure of atoms and the Pauli's exclusion principle. The forces providing self-organization of atoms in the bulk of a condensed substance are shown. The calculated interatomic distances in graphite and alloys of gold with silver coincide with those known from experiments with accuracy of 0.1%.展开更多
Presents the counting of the counts number of primitive elements of finite dimensional field extension GF(p nm )/GF(p n) using (1) the principle of inclusion exclusion, (2) the Mbius inversion, (3) the Euler ...Presents the counting of the counts number of primitive elements of finite dimensional field extension GF(p nm )/GF(p n) using (1) the principle of inclusion exclusion, (2) the Mbius inversion, (3) the Euler function, and the new identity obtained ∑t|p nm-1 , t p nmq j -1(t)=p nm -∑jp nmq j +∑j 1<j 2p nmqj 1qj 2 -…+(-1) kp nmq 1…q k where, m>1, p is a prime, (·) is Euler function, and q 1,…,q k are the all distinct prime divisors of m.展开更多
An assumption that <em>all</em> the six flavour quarks are attributed to be the components of <em>a same, a</em> <em>common</em> isospin multiplets space named <strong>STS<...An assumption that <em>all</em> the six flavour quarks are attributed to be the components of <em>a same, a</em> <em>common</em> isospin multiplets space named <strong>STS</strong> is proposed. Base on <strong>Pauli Exclusion Principle</strong>, every quark is assigned to different flavour marks in STS. Every flavour quark possesses <em>its own colour spectral line array</em> specially appointed. The collection of colour spectral line arrays of the six flavour quarks constructs together the <strong>CSDF</strong>, Colour Spectrum Diagram of Flavour, further baryons and mesons could be constructed from <strong>CSDF</strong>. STS, Spin Topological Space is a math frame with infinite dimensional matrix representation for spin angular momentum. Flavours is an isospin angular momentum coupling phenomena of the three-colour-quarks.展开更多
In this work we develop necessary and sufficient conditions for describing the family of anti-Hurwitz polynomials, introduced by Vergara-Hermosilla <em>et al</em>. in [1]. Specifically, we studied a dual v...In this work we develop necessary and sufficient conditions for describing the family of anti-Hurwitz polynomials, introduced by Vergara-Hermosilla <em>et al</em>. in [1]. Specifically, we studied a dual version of the Theorem of Routh-Hurwitz and present explicit criteria for polynomials of low order and derivatives. Another contribution of this work is establishing a dual version of the Hermite-Biehler Theorem. To this aim, we give extensions of the boundary crossing Theorems and a zero exclusion principle for anti-Hurwitz polynomials.展开更多
The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics...The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics with one extinct species, by applying the technique of average functions and the new principle of competitive exclusion.展开更多
By assuming the cosmological principle includes the Pauli Exclusion Principle (PEP) and that the initial singularity existed within Planck time and length scales, a model for inflationary expansion is argued using onl...By assuming the cosmological principle includes the Pauli Exclusion Principle (PEP) and that the initial singularity existed within Planck time and length scales, a model for inflationary expansion is argued using only standard model physics without any changes to general relativity. All Fermionic matter is forced by the PEP to make a quantum transition to minimally orthogonal states in sequential Planck time intervals. This results in an initial inflation effect due to nearest neighbor quantum transitions which is then exacerbated by matter and antimatter creation effects due to collisions giving rise to the observational effects of universal inflation. The model provides a mechanistic explanation for primordial expansion using only physics from the standard model, specifically utilizing the PEP as a repulsion force between indistinguishable fermions. The present theory offers the benefit of not requiring any particles or fields outside of the standard model nor utilizing changes to general relativity. More succinctly, this theory goes beyond simply offering a mathematical representation (or fit) of the functional dependence but rather offers a mechanistic model to drive inflation using only standard model physics.展开更多
A quantum theory for a one-electron system can be developed in either Heisenberg picture or Schrodinger picture. For a many-electron system, a theory must be developed in the Heisenberg picture, and the indistinguisha...A quantum theory for a one-electron system can be developed in either Heisenberg picture or Schrodinger picture. For a many-electron system, a theory must be developed in the Heisenberg picture, and the indistinguishability and Pauli’s exclusion principle must be incorporated. The hydrogen atom energy levels are obtained by solving the Schrodinger energy eigenvalue equation, which is the most significant result obtained in the Schrodinger picture. Both boson and fermion field equations are nonlinear in the presence of a pair interaction.展开更多
We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater tha...We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater than 1. Then we prove that the complementarity principle yields tight quantum bounds of violations of N-qubit Svetlichny's inequalities. This result not only demonstrates that exclusivity principle can give tight quantum bound for certain type of genuine multipartite correlations, but also illustrates the subtle relationship between quantum complementarity and quantum genuine multipartite correlations.展开更多
We propose to deploy limits that arise from different tests of the Pauli Exclusion Principle: i) to provide theories of quantum gravity with experimental guidance; ii) to distinguish, among the plethora of possible...We propose to deploy limits that arise from different tests of the Pauli Exclusion Principle: i) to provide theories of quantum gravity with experimental guidance; ii) to distinguish, among the plethora of possible models, the ones that are already ruled out by current data; iii) to direct future attempts to be in accordance with experimental constraints. We first review experimental bounds on nuclear processes forbidden by the Pauli Exclusion Principle,which have been derived by several experimental collaborations making use of various detector materials. Distinct features of the experimental devices entail sensitivities on the constraints hitherto achieved that may differ from one another by several orders of magnitude. We show that with choices of these limits, well-known examples of flat noncommutative space-time instantiations of quantum gravity can be heavily constrained, and eventually ruled out.We devote particular attention to the analysis of the κ-Minkowski and θ-Minkowski noncommutative spacetimes.These are deeply connected to some scenarios in string theory, loop quantum gravity, and noncommutative geometry.We emphasize that the severe constraints on these quantum spacetimes, although they cannot rule out theories of top-down quantum gravity to which they are connected in various ways, provide a powerful limitation for those models. Focus on this will be necessary in the future.展开更多
The paper represents a rigorous treatment of the underlying quantum theory, not just in words but providing the underlying technical details, as to why matter occupies so large a volume and its intimate connection wit...The paper represents a rigorous treatment of the underlying quantum theory, not just in words but providing the underlying technical details, as to why matter occupies so large a volume and its intimate connection with the Pauli exclusion principle, as more and more matter is put together, as well as of the contraction or shrinkage of "bosonic matter", upon collapse, for which the Panli exclusion is abolished. From the derived explicit bounds of integrals of powers of the particle number densities, explicit bounds on probabilities of the occurrences of the events just described are extracted. These probabilities lead one to infer the change of the "size" or extension of such matter, upon expansion or contraction, respectively, as their content is increased.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12271394,11775040,12011530014)the Natural Science Foundation of Shanxi Province+3 种基金China(Grant Nos.201801D221032 and 201801D121016)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0178)the Key Research and Development Program of Shanxi Province(Grant No.202102010101004)the China Scholarship Council。
文摘We investigate the information exclusion principle for multiple measurements with assistance of multiple quantum memories that are well bounded by the upper and lower bounds.The lower bound depends on the observables'complementarity and the complementarity of uncertainty whilst the upper bound includes the complementarity of the observables,quantum discord,and quantum condition entropy.In quantum measurement processing,there exists a relationship between the complementarity of uncertainty and the complementarity of information.In addition,based on the information exclusion principle the complementarity of uncertainty and the shareability of quantum discord can exist as an essential factor to enhance the bounds of each other in the presence of quantum memory.
文摘In view of the problems in the selection of alternatives which are mutually exclusive and the criticism against the increment principle, this article reveals the cause of the mistake and demonstrates that only the increment principle and the incremental analysis method is the principle and method that we should follow and adopt in schematizing the economic policy-making.
文摘We all physicist have long been believed that an elementary particle is a wave as well as a particle, but we discuss in this paper that an electron (probably all fermions) is always a particle. Author claim that quantum mechanics (QM) is not such mysterious as Bohr stated that the wave turn to the particle by observation. We can understand QM by natural human sense. The wave nature of electrons is only an appearance or a phenomena but not intrinsic or substantial. An electron is an individual body, which interferes with other individual electrons. Interference is the key word instead of the wave to understand the quantum mechanics. Interference produces the wave nature and the uncertainty. When we determine that an electron is nothing but a particle, we will see the true meaning of wave function and the Schr?dinger’s equation.
文摘The mechanism of addition of separate atoms to a growing center is considered with application of model of a pair interpenetration of atoms. Features of geometrical model are related with the electronic structure of atoms and the Pauli's exclusion principle. The forces providing self-organization of atoms in the bulk of a condensed substance are shown. The calculated interatomic distances in graphite and alloys of gold with silver coincide with those known from experiments with accuracy of 0.1%.
文摘Presents the counting of the counts number of primitive elements of finite dimensional field extension GF(p nm )/GF(p n) using (1) the principle of inclusion exclusion, (2) the Mbius inversion, (3) the Euler function, and the new identity obtained ∑t|p nm-1 , t p nmq j -1(t)=p nm -∑jp nmq j +∑j 1<j 2p nmqj 1qj 2 -…+(-1) kp nmq 1…q k where, m>1, p is a prime, (·) is Euler function, and q 1,…,q k are the all distinct prime divisors of m.
文摘An assumption that <em>all</em> the six flavour quarks are attributed to be the components of <em>a same, a</em> <em>common</em> isospin multiplets space named <strong>STS</strong> is proposed. Base on <strong>Pauli Exclusion Principle</strong>, every quark is assigned to different flavour marks in STS. Every flavour quark possesses <em>its own colour spectral line array</em> specially appointed. The collection of colour spectral line arrays of the six flavour quarks constructs together the <strong>CSDF</strong>, Colour Spectrum Diagram of Flavour, further baryons and mesons could be constructed from <strong>CSDF</strong>. STS, Spin Topological Space is a math frame with infinite dimensional matrix representation for spin angular momentum. Flavours is an isospin angular momentum coupling phenomena of the three-colour-quarks.
文摘In this work we develop necessary and sufficient conditions for describing the family of anti-Hurwitz polynomials, introduced by Vergara-Hermosilla <em>et al</em>. in [1]. Specifically, we studied a dual version of the Theorem of Routh-Hurwitz and present explicit criteria for polynomials of low order and derivatives. Another contribution of this work is establishing a dual version of the Hermite-Biehler Theorem. To this aim, we give extensions of the boundary crossing Theorems and a zero exclusion principle for anti-Hurwitz polynomials.
文摘The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics with one extinct species, by applying the technique of average functions and the new principle of competitive exclusion.
文摘By assuming the cosmological principle includes the Pauli Exclusion Principle (PEP) and that the initial singularity existed within Planck time and length scales, a model for inflationary expansion is argued using only standard model physics without any changes to general relativity. All Fermionic matter is forced by the PEP to make a quantum transition to minimally orthogonal states in sequential Planck time intervals. This results in an initial inflation effect due to nearest neighbor quantum transitions which is then exacerbated by matter and antimatter creation effects due to collisions giving rise to the observational effects of universal inflation. The model provides a mechanistic explanation for primordial expansion using only physics from the standard model, specifically utilizing the PEP as a repulsion force between indistinguishable fermions. The present theory offers the benefit of not requiring any particles or fields outside of the standard model nor utilizing changes to general relativity. More succinctly, this theory goes beyond simply offering a mathematical representation (or fit) of the functional dependence but rather offers a mechanistic model to drive inflation using only standard model physics.
文摘A quantum theory for a one-electron system can be developed in either Heisenberg picture or Schrodinger picture. For a many-electron system, a theory must be developed in the Heisenberg picture, and the indistinguishability and Pauli’s exclusion principle must be incorporated. The hydrogen atom energy levels are obtained by solving the Schrodinger energy eigenvalue equation, which is the most significant result obtained in the Schrodinger picture. Both boson and fermion field equations are nonlinear in the presence of a pair interaction.
文摘We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater than 1. Then we prove that the complementarity principle yields tight quantum bounds of violations of N-qubit Svetlichny's inequalities. This result not only demonstrates that exclusivity principle can give tight quantum bound for certain type of genuine multipartite correlations, but also illustrates the subtle relationship between quantum complementarity and quantum genuine multipartite correlations.
文摘We propose to deploy limits that arise from different tests of the Pauli Exclusion Principle: i) to provide theories of quantum gravity with experimental guidance; ii) to distinguish, among the plethora of possible models, the ones that are already ruled out by current data; iii) to direct future attempts to be in accordance with experimental constraints. We first review experimental bounds on nuclear processes forbidden by the Pauli Exclusion Principle,which have been derived by several experimental collaborations making use of various detector materials. Distinct features of the experimental devices entail sensitivities on the constraints hitherto achieved that may differ from one another by several orders of magnitude. We show that with choices of these limits, well-known examples of flat noncommutative space-time instantiations of quantum gravity can be heavily constrained, and eventually ruled out.We devote particular attention to the analysis of the κ-Minkowski and θ-Minkowski noncommutative spacetimes.These are deeply connected to some scenarios in string theory, loop quantum gravity, and noncommutative geometry.We emphasize that the severe constraints on these quantum spacetimes, although they cannot rule out theories of top-down quantum gravity to which they are connected in various ways, provide a powerful limitation for those models. Focus on this will be necessary in the future.
文摘The paper represents a rigorous treatment of the underlying quantum theory, not just in words but providing the underlying technical details, as to why matter occupies so large a volume and its intimate connection with the Pauli exclusion principle, as more and more matter is put together, as well as of the contraction or shrinkage of "bosonic matter", upon collapse, for which the Panli exclusion is abolished. From the derived explicit bounds of integrals of powers of the particle number densities, explicit bounds on probabilities of the occurrences of the events just described are extracted. These probabilities lead one to infer the change of the "size" or extension of such matter, upon expansion or contraction, respectively, as their content is increased.