Exergy loss analysis was conducted to identify the irreversibility in each component of the isopropanol- acetone-hydrogen chemical heat pump (IAH-CHP). The results indicate that the highest irreversibility on a syst...Exergy loss analysis was conducted to identify the irreversibility in each component of the isopropanol- acetone-hydrogen chemical heat pump (IAH-CHP). The results indicate that the highest irreversibility on a system basis occurs in the distillation column. Moreover, the effect of operating parameters on thermodynamic performances of the IAH-CHP was studied and the optimal conditions were obtained. Finally, the potential methods to reduce the irreversibility of the IAH-CHP system were investigated. It is found that reactive distillation is apromising alternative. The enthalpy and exergy efficiency of the IAH-CHP with reactive distillation increases by 24.1% and 23.2%, respectively.展开更多
基金This work was supported by the National Key R&D Program of China (2016YFB0601200) and the National Natural Science Foundation of China (Grant Nos. 51476173, 51576194).
文摘Exergy loss analysis was conducted to identify the irreversibility in each component of the isopropanol- acetone-hydrogen chemical heat pump (IAH-CHP). The results indicate that the highest irreversibility on a system basis occurs in the distillation column. Moreover, the effect of operating parameters on thermodynamic performances of the IAH-CHP was studied and the optimal conditions were obtained. Finally, the potential methods to reduce the irreversibility of the IAH-CHP system were investigated. It is found that reactive distillation is apromising alternative. The enthalpy and exergy efficiency of the IAH-CHP with reactive distillation increases by 24.1% and 23.2%, respectively.