In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plasti...In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plastic welding machine. At first, relations between amplitude of vibration and frequency as well as main loop current and amplitude of vibration were analyzed. From this analysis, we deduced that frequency tracking process of the vibration system can be concluded as an optimizing problem of one dimensional fluctuant extremum of main loop current in vibration system. Then a method of self-optimizing fuzzy control, used for the realization of automatic frequency tracking in vibration system, is presented on the basis of serf-optimizing adaptive control approach and fuzzy control approach. The result of experiments shows that the fuzzy self-optimizing method can solve the problem of tracking frequency drift very well. Response time of tracking in the system is less than 50 ms, which basically meets the requirements of frequency tracking in ultrasonic plastic welding machine.展开更多
We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital auto...We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.展开更多
Aimed at the welding ttechnological requirements of foe missile shell,a computer control system for automatic TIG welding of aluminium alloy sheets has been developed in this paper.The hardware of the system is compos...Aimed at the welding ttechnological requirements of foe missile shell,a computer control system for automatic TIG welding of aluminium alloy sheets has been developed in this paper.The hardware of the system is composed of the four sub-systems,i.e.weldingpower source,arc length controller,welding wire feeder and welding head traveller.The software of the system comprises the on-line executing program and the off-line serving program.The operating principle,specifications and control of the system are introduced.The experiments indicate that the system possesses rational hardware structure and practical software function,and has solved the problem of high frequency interference to the computer control system. Therefore,the control system can satisfy the requirements of automatic TIG welding of the missile shell.展开更多
In this paper a new automatic frequency control (AFC) scheme was proposed, which could be used for the receiver of low earth orbit (LEO) satellite communication system in continuous transmitting scenario. By emplo...In this paper a new automatic frequency control (AFC) scheme was proposed, which could be used for the receiver of low earth orbit (LEO) satellite communication system in continuous transmitting scenario. By employing the time varying characteristic of particle filter technique, the new scheme combined the preamble based estimating step and data based estimating step to provide initial probability density recursively. Theoretical analysis proved that the proposed AFC scheme could provide better performance than the two-step scheme. The same conclusion was achieved by computer simulations with the criteria of root-mean square (RMS) frequency estimating performance and bit error rate performance.展开更多
In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for...In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.展开更多
Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic...Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic control systems(ACS).In this paper,different methods of voltage-frequency and phase-difference control are analyzed,and a control methodology based on active frequency tracking(AFT)is presented.Through the establishment of the multi-point automatic synchronization model and the analysis of the governor transfer function with this control method,the important control parameters and automatic process control sequence are summarized.The correctness and effectiveness of the designed methodology are inspected through on-site testing,and the importance of the function and selection of parameters are also explored.展开更多
Islanded microgrids must be self-sufficient in terms of frequency and voltage control due to their islanded operation.A control strategy for frequency regulation by combining the operation of a wind generator,a diesel...Islanded microgrids must be self-sufficient in terms of frequency and voltage control due to their islanded operation.A control strategy for frequency regulation by combining the operation of a wind generator,a diesel generator,a battery energy storage system and a dump load in a microgrid is proposed in this paper.In the proposed strategy,the control task is partitioned into two subtasks:1)choosing the appropriate element to be used for regulation,and 2)providing frequency regulation.A global controller chooses the element to operate.Then,the frequency regulation is provided by separate individual controllers.The proposed control strategy is tested on a microgrid with mixed types of generation and modeled on Simulink.By monitoring the power of individual elements and system frequency,it is shown that the proposed control strategy operates efficiently.The proposed strategy facilitates the integration of renewable energy sources and enhances frequency regulation.展开更多
Communication plays a vital role in incorporating smartness into the interconnected power system.However,historical records prove that the data transfer has always been vulnerable to cyber-attacks.Unless these cyber-a...Communication plays a vital role in incorporating smartness into the interconnected power system.However,historical records prove that the data transfer has always been vulnerable to cyber-attacks.Unless these cyber-attacks are identified and cordoned off,they may lead to black-out and result in national security issues.This paper proposes an optimal two-stage Kalman filter(OTS-KF)for simultaneous state and cyber-attack estimation in automatic generation control(AGC)system.Biases/cyber-attacks are modeled as unknown inputs in the AGC dynamics.Five types of cyber-attacks,i.e.,false data injection(FDI),data replay attack,denial of service(DoS),scaling,and ramp attacks,are injected into the measurements and estimated using OTS-KF.As the load variations of each area are seldom available,OTS-KF is reformulated to estimate the states and outliers along with the load variations of the system.The proposed technique is validated on the benchmark two-area,three-area,and five-area power system models.The simulation results under various test conditions demonstrate the efficacy of the proposed filter.展开更多
Newly proposed power system control methodologies combine economic dispatch(ED) and automatic generation control(AGC) to achieve the steady-state cost-optimal solution under stochastic operation conditions. However, a...Newly proposed power system control methodologies combine economic dispatch(ED) and automatic generation control(AGC) to achieve the steady-state cost-optimal solution under stochastic operation conditions. However, a real power system is subjected to continuous demand disturbance and system constraints due to the input saturation, communication delays and unmeasurable feed-forward load disturbances. Therefore, optimizing the dynamic response under practical conditions is equally important. This paper proposes a state constrained distributed model predictive control(SCDMPC)scheme for the optimal frequency regulation of an interconnected power system under actual operation conditions, which exist due to the governor saturation, generation rate constraints(GRCs), communication delays, and unmeasured feed-forward load disturbances. In addition, it proposes an algorithm to handle the solution infeasibility within the SCDMPC scheme, when the input and state constraints are conflicting. The proposed SCDMPC scheme is then tested with numerical studies on a three-area interconnected network. The results show that the proposed scheme gives better control and cost performance for both steady state and dynamic state in comparison to the traditional distributed model predictive control(MPC) schemes.展开更多
The large-scale popularization of electric vehicles(EVs)brings the potential for grid frequency regulation.Considering the characteristics of fast response and adjustment of EVs,two control strategies of automatic gen...The large-scale popularization of electric vehicles(EVs)brings the potential for grid frequency regulation.Considering the characteristics of fast response and adjustment of EVs,two control strategies of automatic generation control(AGC)with EVs are proposed responding to two high frequency regulating signals extracted from area control error(ACE)and area regulation requirement(ARR)by a digital filter,respectively.In order to dispatch regulation task to EVs,the capacity of regulation is calculated based on maximum V2G power and the present V2G power of EVs.Finally,simulations based on a two-area interconnected power system show that the proposed approaches can significantly suppress frequency deviation and reduce the active power output of traditional generation units.展开更多
We propose a new proportional-integral-derivative(PID) controller design method for an automatic voltage regulation(AVR) system based on approximate model matching in the frequency domain. The parameters of the PID co...We propose a new proportional-integral-derivative(PID) controller design method for an automatic voltage regulation(AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods.展开更多
基金Sponsored by the Natural Science Foundation of Shanghai Education Committee(Grant No.05LZ13)Shanghai Leading Academic Discipline Project(Grant No. P1303)Shanghai Elitist Project(Grant No.04YQHB126)
文摘In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plastic welding machine. At first, relations between amplitude of vibration and frequency as well as main loop current and amplitude of vibration were analyzed. From this analysis, we deduced that frequency tracking process of the vibration system can be concluded as an optimizing problem of one dimensional fluctuant extremum of main loop current in vibration system. Then a method of self-optimizing fuzzy control, used for the realization of automatic frequency tracking in vibration system, is presented on the basis of serf-optimizing adaptive control approach and fuzzy control approach. The result of experiments shows that the fuzzy self-optimizing method can solve the problem of tracking frequency drift very well. Response time of tracking in the system is less than 50 ms, which basically meets the requirements of frequency tracking in ultrasonic plastic welding machine.
基金Project supported by the Chinese Academy of Sciences(Grant Nos.XDC07000000 and GJJSTD20200001)Hefei Comprehensive National Science CenterYouth Innovation Promotion Association of Chinese Academy of Sciences for the support。
文摘We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.
文摘Aimed at the welding ttechnological requirements of foe missile shell,a computer control system for automatic TIG welding of aluminium alloy sheets has been developed in this paper.The hardware of the system is composed of the four sub-systems,i.e.weldingpower source,arc length controller,welding wire feeder and welding head traveller.The software of the system comprises the on-line executing program and the off-line serving program.The operating principle,specifications and control of the system are introduced.The experiments indicate that the system possesses rational hardware structure and practical software function,and has solved the problem of high frequency interference to the computer control system. Therefore,the control system can satisfy the requirements of automatic TIG welding of the missile shell.
基金supported by the National Basic Research Program of China (2009CB320401)the National Science and Technology Major Project of China (2012ZX03004005-002)+1 种基金the New Generation Broadband Wireless Mobile Communication Network of Major Special Projects (2010ZX03003-001)the Fundamental Research Funds for the Central Universities (2010PTB-03-04 G470220)
文摘In this paper a new automatic frequency control (AFC) scheme was proposed, which could be used for the receiver of low earth orbit (LEO) satellite communication system in continuous transmitting scenario. By employing the time varying characteristic of particle filter technique, the new scheme combined the preamble based estimating step and data based estimating step to provide initial probability density recursively. Theoretical analysis proved that the proposed AFC scheme could provide better performance than the two-step scheme. The same conclusion was achieved by computer simulations with the criteria of root-mean square (RMS) frequency estimating performance and bit error rate performance.
基金The National Natural Science Foundation of China(No. 60974116 )the Research Fund of Aeronautics Science (No.20090869007)Specialized Research Fund for the Doctoral Program of Higher Education (No. 200902861063)
文摘In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.
文摘Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic control systems(ACS).In this paper,different methods of voltage-frequency and phase-difference control are analyzed,and a control methodology based on active frequency tracking(AFT)is presented.Through the establishment of the multi-point automatic synchronization model and the analysis of the governor transfer function with this control method,the important control parameters and automatic process control sequence are summarized.The correctness and effectiveness of the designed methodology are inspected through on-site testing,and the importance of the function and selection of parameters are also explored.
文摘随着不确定性可再生能源大规模并网,电网频率特性日益复杂。传统火电机组具有响应时间长、无法准确跟踪指令等问题,亟须利用储能提高火电机组参与自动发电控制(automatic generation control,AGC)调频时的调节性能。首先,针对调频考核规则,建立调频性能指标数学模型,并考虑火储系统出力特性,结合改进层次分析法校正调频子指标权重系数,以此构建以调频性能最优为目标的第一阶段优化模型;在此基础上,为了减少储能荷电状态(state of charge,SOC)越限和深度充放情况,以储能SOC偏差最小为目标构建第二阶段优化模型。仿真验证表明:所提的两阶段调频方法能够提高火储联合系统的调频性能和调频收益,同时有效减少储能深度充放情况和工作寿命损耗,提高储能辅助调频服务的可持续性。
文摘“双碳”目标的实施加速了新型电力系统发展。然而,新型电力系统的转动惯量和调节能力逐渐难以适应复杂多变的负荷变化。因此,开发更高效、更快速的调频资源参与自动发电控制(automatic generation control,AGC)已成为刻不容缓之事。但是,不同调频机组之间的异质性显著,包括机组模型、容量和响应速度的差异,这对AGC提出了挑战。为了提升异质调频资源参与AGC的性能,该文提出了一种分布式协同AGC方法。首先,基于分布式固定时间一致性理论提出了一种分布式固定时间区域控制偏差(area control error,ACE)发掘算法。随后,各AGC机组根据获取的ACE信息设计独立的PI控制器参与频率调节。在ACE调节的最后阶段,根据各机组出力的标幺值,设计了分布式固定时间功率均分控制器,控制低速AGC机组承担更多的功率调整量,从而释放高速AGC机组的容量并为下一轮AGC服务做好准备。通过对包含5种不同调频单元的两区域电力系统进行仿真研究,验证了所提分布式协同AGC方法的性能。结果表明,所提方法可以有效地提高系统的调频性能,且能够在设计的时间内实现期望的有功功率分配。
文摘Islanded microgrids must be self-sufficient in terms of frequency and voltage control due to their islanded operation.A control strategy for frequency regulation by combining the operation of a wind generator,a diesel generator,a battery energy storage system and a dump load in a microgrid is proposed in this paper.In the proposed strategy,the control task is partitioned into two subtasks:1)choosing the appropriate element to be used for regulation,and 2)providing frequency regulation.A global controller chooses the element to operate.Then,the frequency regulation is provided by separate individual controllers.The proposed control strategy is tested on a microgrid with mixed types of generation and modeled on Simulink.By monitoring the power of individual elements and system frequency,it is shown that the proposed control strategy operates efficiently.The proposed strategy facilitates the integration of renewable energy sources and enhances frequency regulation.
文摘Communication plays a vital role in incorporating smartness into the interconnected power system.However,historical records prove that the data transfer has always been vulnerable to cyber-attacks.Unless these cyber-attacks are identified and cordoned off,they may lead to black-out and result in national security issues.This paper proposes an optimal two-stage Kalman filter(OTS-KF)for simultaneous state and cyber-attack estimation in automatic generation control(AGC)system.Biases/cyber-attacks are modeled as unknown inputs in the AGC dynamics.Five types of cyber-attacks,i.e.,false data injection(FDI),data replay attack,denial of service(DoS),scaling,and ramp attacks,are injected into the measurements and estimated using OTS-KF.As the load variations of each area are seldom available,OTS-KF is reformulated to estimate the states and outliers along with the load variations of the system.The proposed technique is validated on the benchmark two-area,three-area,and five-area power system models.The simulation results under various test conditions demonstrate the efficacy of the proposed filter.
文摘Newly proposed power system control methodologies combine economic dispatch(ED) and automatic generation control(AGC) to achieve the steady-state cost-optimal solution under stochastic operation conditions. However, a real power system is subjected to continuous demand disturbance and system constraints due to the input saturation, communication delays and unmeasurable feed-forward load disturbances. Therefore, optimizing the dynamic response under practical conditions is equally important. This paper proposes a state constrained distributed model predictive control(SCDMPC)scheme for the optimal frequency regulation of an interconnected power system under actual operation conditions, which exist due to the governor saturation, generation rate constraints(GRCs), communication delays, and unmeasured feed-forward load disturbances. In addition, it proposes an algorithm to handle the solution infeasibility within the SCDMPC scheme, when the input and state constraints are conflicting. The proposed SCDMPC scheme is then tested with numerical studies on a three-area interconnected network. The results show that the proposed scheme gives better control and cost performance for both steady state and dynamic state in comparison to the traditional distributed model predictive control(MPC) schemes.
基金This work was supported by Sino-US international Science and Technology Cooperation Project(Grant No.2016YFE0105300).
文摘The large-scale popularization of electric vehicles(EVs)brings the potential for grid frequency regulation.Considering the characteristics of fast response and adjustment of EVs,two control strategies of automatic generation control(AGC)with EVs are proposed responding to two high frequency regulating signals extracted from area control error(ACE)and area regulation requirement(ARR)by a digital filter,respectively.In order to dispatch regulation task to EVs,the capacity of regulation is calculated based on maximum V2G power and the present V2G power of EVs.Finally,simulations based on a two-area interconnected power system show that the proposed approaches can significantly suppress frequency deviation and reduce the active power output of traditional generation units.
文摘We propose a new proportional-integral-derivative(PID) controller design method for an automatic voltage regulation(AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods.