We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform est...We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform estimates on solutions of the time-difference equations, we establish the existence of weak solutions, and also discuss the uniqueness.展开更多
In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate cri...In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
This paper studies a two-dimensional modified Navier-stokes equations. The author shows the existence and uniqueness of weak solutions for this equation by Galerkin method in bounded domains. The result is further ext...This paper studies a two-dimensional modified Navier-stokes equations. The author shows the existence and uniqueness of weak solutions for this equation by Galerkin method in bounded domains. The result is further extended to the case of unbounded channel-like domains.展开更多
In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressu...In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.展开更多
In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotr...In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotropic spaces for appropriate initial data.展开更多
In this paper, the existence and uniqueness of almost periodic solutions for some infinite delay integral equations are discussed. By using Krasnoselskii fixed point theorem,some new results are obtained.
This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensiona...This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensional balanced model. The main aim of this paper is to introduce some results about the global and local (with respect to time) existence of solutions given by the authors in recent years, but others' important contributions and the literature on this subject are also quoted. We discuss briefly the relationships among the existence and uniqueness, physical instability and computational instability. In the appendixes, some key mathematical techniques in obtaining our results are presented, which are of vital importance to other problems in geophysical fluid dynamics as well.展开更多
In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coeffic...In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coefficient condition and its judging criterion as well as the righthand condition to ensure the existing solution uniquely.展开更多
This paper deals with an abstract periodic gradient system in which the gradient is taken with respect to a variable metric. We obtain an existence and uniqueness result via the application of a global inverse theorem.
This paper is devoted to the study of the existence and uniqueness of the positive solution for a type of the nonlinear third-order three-point boundary value problem. Our results are based on an iterative method and ...This paper is devoted to the study of the existence and uniqueness of the positive solution for a type of the nonlinear third-order three-point boundary value problem. Our results are based on an iterative method and the Leray-Schauder fixed point theorem.展开更多
In this paper, we consider nonnegative solutions to Cauchy problem for the general nonlinear filtration equations ut -Dj (α^ij (x, t, u)Diψ(u)) +b^i (t, u)Diu+C(x, t, u) = 0, and obtain the existence, un...In this paper, we consider nonnegative solutions to Cauchy problem for the general nonlinear filtration equations ut -Dj (α^ij (x, t, u)Diψ(u)) +b^i (t, u)Diu+C(x, t, u) = 0, and obtain the existence, uniqueness and blow-up in finite time of these solutions under some structure conditions.展开更多
This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uni...This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.展开更多
In this paper, we study the anti-periodic solutions for 2n-th order differential equations. By using the Schauder's fixed point theorem, we present some new results about the existence and uniqueness of anti-periodic...In this paper, we study the anti-periodic solutions for 2n-th order differential equations. By using the Schauder's fixed point theorem, we present some new results about the existence and uniqueness of anti-periodic solutions for 2n-th order differential equations.展开更多
In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum...In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.展开更多
A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This appr...A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This approach gives a natural numerical scheme to approximate the solution.The convergence of the approximation is proved and its asymptatic order obtained.展开更多
In this paper we discuss the following nonlinear degenerate parabolic systems u_i=△a_i(u_i)+b_i(x,t,u_i)Du_i+f_i(x,t,u)for i = 1,2, …, m and u = (u_1,…, u_m) is a vector function, with Dirichlet boundary condition....In this paper we discuss the following nonlinear degenerate parabolic systems u_i=△a_i(u_i)+b_i(x,t,u_i)Du_i+f_i(x,t,u)for i = 1,2, …, m and u = (u_1,…, u_m) is a vector function, with Dirichlet boundary condition. Under some structure conditions on a_i,b_i and f_i and initial data u_i^o∈Li(Ω) for some pi>p_i^o = 1,2,…,m, the result on existence and uniquence of global solution is established.展开更多
The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak so...The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.展开更多
The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have stud...The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have studied the boundary value problems of the complete third-order differential equations u′′′(t) = f (t,u(t),u′(t),u′′(t)). In this paper, we discuss the existence and uniqueness of solutions and positive solutions of the fully third-order ordinary differential equation on [0,1] with the boundary condition u(0) = u′(1) = u′′(1) = 0. Under some inequality conditions on nonlinearity f some new existence and uniqueness results of solutions and positive solutions are obtained.展开更多
It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. M...It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.展开更多
文摘We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform estimates on solutions of the time-difference equations, we establish the existence of weak solutions, and also discuss the uniqueness.
基金supported by the Natural Science Foundation of China(11771166,12071169)the Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46。
文摘In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘This paper studies a two-dimensional modified Navier-stokes equations. The author shows the existence and uniqueness of weak solutions for this equation by Galerkin method in bounded domains. The result is further extended to the case of unbounded channel-like domains.
基金partially supported by the National Natural Sciences Foundation of China(11931010,12061003)。
文摘In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.
文摘In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotropic spaces for appropriate initial data.
基金supported by the National Natural Science Foundation of China(11371027) the Projects of Outstanding Young Talents of Universities in Anhui Province(gxyq2018116)+2 种基金 the Teaching Groups in Anhui Province(2016jxtd080,2015jxtd048) the NSF of Educational Bureau of Anhui Province(KJ2017A702,KJ2017A704) the NSF of Bozhou University(BZSZKYXM201302,BSKY201539)
文摘In this paper, the existence and uniqueness of almost periodic solutions for some infinite delay integral equations are discussed. By using Krasnoselskii fixed point theorem,some new results are obtained.
文摘This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensional balanced model. The main aim of this paper is to introduce some results about the global and local (with respect to time) existence of solutions given by the authors in recent years, but others' important contributions and the literature on this subject are also quoted. We discuss briefly the relationships among the existence and uniqueness, physical instability and computational instability. In the appendixes, some key mathematical techniques in obtaining our results are presented, which are of vital importance to other problems in geophysical fluid dynamics as well.
基金Supported by the national natural science foundation.
文摘In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coefficient condition and its judging criterion as well as the righthand condition to ensure the existing solution uniquely.
文摘This paper deals with an abstract periodic gradient system in which the gradient is taken with respect to a variable metric. We obtain an existence and uniqueness result via the application of a global inverse theorem.
文摘This paper is devoted to the study of the existence and uniqueness of the positive solution for a type of the nonlinear third-order three-point boundary value problem. Our results are based on an iterative method and the Leray-Schauder fixed point theorem.
基金Foundation item: Supported by National Science Foundation of China(10572156) Supported by Natural Science Foundation of Henan Province(0211010900) Supported by National Science Foundation of Department of Education of Henan Province(200510465001)
文摘In this paper, we consider nonnegative solutions to Cauchy problem for the general nonlinear filtration equations ut -Dj (α^ij (x, t, u)Diψ(u)) +b^i (t, u)Diu+C(x, t, u) = 0, and obtain the existence, uniqueness and blow-up in finite time of these solutions under some structure conditions.
文摘This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.
文摘In this paper, we study the anti-periodic solutions for 2n-th order differential equations. By using the Schauder's fixed point theorem, we present some new results about the existence and uniqueness of anti-periodic solutions for 2n-th order differential equations.
基金partially supported by the National Natural Science Foundation of China (11671273 and 11931010)key research project of the Academy for Multidisciplinary Studies of CNU and Beijing Natural Science Foundation (1192001).
文摘In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.
文摘A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This approach gives a natural numerical scheme to approximate the solution.The convergence of the approximation is proved and its asymptatic order obtained.
基金Research supported by the Natural Science Foundation of Fujian Province Under Grant A92025.
文摘In this paper we discuss the following nonlinear degenerate parabolic systems u_i=△a_i(u_i)+b_i(x,t,u_i)Du_i+f_i(x,t,u)for i = 1,2, …, m and u = (u_1,…, u_m) is a vector function, with Dirichlet boundary condition. Under some structure conditions on a_i,b_i and f_i and initial data u_i^o∈Li(Ω) for some pi>p_i^o = 1,2,…,m, the result on existence and uniquence of global solution is established.
基金partially supported by NSFC(11831003,12031012)the Institute of Modern Analysis-A Frontier Research Center of Shanghai。
文摘The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.
文摘The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have studied the boundary value problems of the complete third-order differential equations u′′′(t) = f (t,u(t),u′(t),u′′(t)). In this paper, we discuss the existence and uniqueness of solutions and positive solutions of the fully third-order ordinary differential equation on [0,1] with the boundary condition u(0) = u′(1) = u′′(1) = 0. Under some inequality conditions on nonlinearity f some new existence and uniqueness results of solutions and positive solutions are obtained.
文摘It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.