A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A doub...A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tetrachlorodibenzo-p dioxin (TCDD) to generate TCDD:AhR:DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.展开更多
CRISPR/Cas systems, especially CRISPR/Cas9, generally result in small insertions/deletions, which are unlikely to eliminate the functions of regulatory and other non-coding sequences. To generate larger genomic deleti...CRISPR/Cas systems, especially CRISPR/Cas9, generally result in small insertions/deletions, which are unlikely to eliminate the functions of regulatory and other non-coding sequences. To generate larger genomic deletions usually requires the use of pairs of guide RNAs. Here we show that it is possible to create such deletions with a single guide RNA by fusing Cas9 or Cas12a with T5 exonuclease(T5exo). These fusion constructs were found to increase both the frequency and size of deletions at target loci in rice protoplasts and seedlings. Moreover, the genome editing efficiencies of Cas9 and Cas12a were also enhanced by fusion with T5 exonuclease. These T5exo-Cas fusions expand the CRISPR toolbox, and facilitate knockout of regulatory and non-coding DNA sequences. From a wider standpoint, our results suggest a general strategy for producing larger deletions using other Cas nucleases.展开更多
The detection of biomarkers is of great significance in the diagnosis of numerous diseases,especially cancer.Herein,we developed a sensitive and universal fluorescent aptasensor strategy based on magnetic beads,DNA G-...The detection of biomarkers is of great significance in the diagnosis of numerous diseases,especially cancer.Herein,we developed a sensitive and universal fluorescent aptasensor strategy based on magnetic beads,DNA G-quadruplex,and exonuclease Ⅲ(Exo Ⅲ).In the presence of a target protein,a label-free single strand DNA(ssDNA)hybridized with the aptamer was released as a trigger DNA due to specific recognition between the aptamer and target.Subsequently,ssDNA initiates the ExoⅢ-aided recycling to amplify the fluorescence signal,which was caused by N-methylmesoporphyrin IX(NMM)insertion into the G-quadruplex structure.This proposed strategy combines the excellent specificity between the aptamer and target,high sensitivity of the fluorescence signal by G-quadruplex and ExoⅢ-aided recycling amplification.We selected(50-1200 nmol/L)MUC1,a common tumor biomarker,as the proof-of-concept target to test the specificity of our aptasenso r.Results reveal that the sensor sensitively and selectively detected the target protein with limits of detection(LODs)of 3.68 and 12.83 nmol/L in buffer solution and 10%serum system,respectively.The strategy can be easily applied to other targets by simply substituting corresponding aptamers and has great potential in the diagnosis and monitoring of several diseases.展开更多
An ultrasensitive electrochemical biosensor to detect trace Hg^(2+)in environmental samples was developed utilizing nanogold-decorated magnetic reduced graphene oxide(MrGO-AuNPs),exonuclease III-assisted target cycle(...An ultrasensitive electrochemical biosensor to detect trace Hg^(2+)in environmental samples was developed utilizing nanogold-decorated magnetic reduced graphene oxide(MrGO-AuNPs),exonuclease III-assisted target cycle(Exo Ⅲ-ATC)and hybridization chain reaction(HCR)synergistic triple signal amplification.The MrGO-AuNPs is a superior carrier for capture DNA(cDNA)and acts as magnetic media for automatic separation and adsorption.This innovative utilization of the magnetism and improved sensing efficiency obviates the need for direct modification and repeated polishing of the working electrode.Additionally,the three DNA hairpins(cDNA,methylene blue(MB)labeled HP1 and HP2)further contribute to biosensor specificity and selectivity.When cDNA captures Hgt,it activates Exo Ⅲ-ATC due to the formation of a sticky end in the DNA stem via thymine-Hig-thymidine(T-Hg^(2+)-T),this leads to the hydrolysis of self-folded DNA by Exo Ⅲ-ATC to form"key"DNA(kDNA).The kDNA subsequently initiates HCR,resulting in massive super-sandwich structures(kDNA-[HP1/HP2])carrying signaling molecules on MrGO-AuNPs,and this overall structure serves as a signal probe(SP).Leveraging magnetic adsorption,the SP was automatically adsorbed onto the magneto-glass carbon electrode(MGCE),generating an amplified signal.This biosensor's detection limit(LOD)was 3.14 pmol/L,far below the limit of 10 nmol/L for mercury in drinking water set by the US EPA.The biosensor also showed excellent selectivity when challenged by interfering ions,and the results of its application in actual samples indicate that it has good potential for practical applications in environmental monitoring.展开更多
基金This project was supported by grants from National Natu ral Science Foundation of China (No. 20107002,20377017).
文摘A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tetrachlorodibenzo-p dioxin (TCDD) to generate TCDD:AhR:DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.
基金supported by grants from the National Transgenic Science and Technology Program of China(2019ZX08010-003,2019ZX08010-001,2018ZX0801002B)the National Key Research and Development Program of China(2016YFD0100602)+1 种基金the Scientific Program of Beijing Municipal Commission of Science and Technology(Z171100001517001)the National Natural Science Foundation of China(31672015)to J.L.Q。
文摘CRISPR/Cas systems, especially CRISPR/Cas9, generally result in small insertions/deletions, which are unlikely to eliminate the functions of regulatory and other non-coding sequences. To generate larger genomic deletions usually requires the use of pairs of guide RNAs. Here we show that it is possible to create such deletions with a single guide RNA by fusing Cas9 or Cas12a with T5 exonuclease(T5exo). These fusion constructs were found to increase both the frequency and size of deletions at target loci in rice protoplasts and seedlings. Moreover, the genome editing efficiencies of Cas9 and Cas12a were also enhanced by fusion with T5 exonuclease. These T5exo-Cas fusions expand the CRISPR toolbox, and facilitate knockout of regulatory and non-coding DNA sequences. From a wider standpoint, our results suggest a general strategy for producing larger deletions using other Cas nucleases.
基金supported by grants from the National Natural Science Foundation of China (No.21472060)Shenzhen Municipal government (Nos.JCYJ20160301153959476 and JCYJ20160324163734374)Shenzhen Reform Commission (Disciplinary Development Program for Chemical Biology)
文摘The detection of biomarkers is of great significance in the diagnosis of numerous diseases,especially cancer.Herein,we developed a sensitive and universal fluorescent aptasensor strategy based on magnetic beads,DNA G-quadruplex,and exonuclease Ⅲ(Exo Ⅲ).In the presence of a target protein,a label-free single strand DNA(ssDNA)hybridized with the aptamer was released as a trigger DNA due to specific recognition between the aptamer and target.Subsequently,ssDNA initiates the ExoⅢ-aided recycling to amplify the fluorescence signal,which was caused by N-methylmesoporphyrin IX(NMM)insertion into the G-quadruplex structure.This proposed strategy combines the excellent specificity between the aptamer and target,high sensitivity of the fluorescence signal by G-quadruplex and ExoⅢ-aided recycling amplification.We selected(50-1200 nmol/L)MUC1,a common tumor biomarker,as the proof-of-concept target to test the specificity of our aptasenso r.Results reveal that the sensor sensitively and selectively detected the target protein with limits of detection(LODs)of 3.68 and 12.83 nmol/L in buffer solution and 10%serum system,respectively.The strategy can be easily applied to other targets by simply substituting corresponding aptamers and has great potential in the diagnosis and monitoring of several diseases.
基金This study was supported by the Key Research and Development Program of China(No.2018YFC0213400)the National Natural Science Foundation of China(Nos.21737002,21976119,and 22176126)。
文摘An ultrasensitive electrochemical biosensor to detect trace Hg^(2+)in environmental samples was developed utilizing nanogold-decorated magnetic reduced graphene oxide(MrGO-AuNPs),exonuclease III-assisted target cycle(Exo Ⅲ-ATC)and hybridization chain reaction(HCR)synergistic triple signal amplification.The MrGO-AuNPs is a superior carrier for capture DNA(cDNA)and acts as magnetic media for automatic separation and adsorption.This innovative utilization of the magnetism and improved sensing efficiency obviates the need for direct modification and repeated polishing of the working electrode.Additionally,the three DNA hairpins(cDNA,methylene blue(MB)labeled HP1 and HP2)further contribute to biosensor specificity and selectivity.When cDNA captures Hgt,it activates Exo Ⅲ-ATC due to the formation of a sticky end in the DNA stem via thymine-Hig-thymidine(T-Hg^(2+)-T),this leads to the hydrolysis of self-folded DNA by Exo Ⅲ-ATC to form"key"DNA(kDNA).The kDNA subsequently initiates HCR,resulting in massive super-sandwich structures(kDNA-[HP1/HP2])carrying signaling molecules on MrGO-AuNPs,and this overall structure serves as a signal probe(SP).Leveraging magnetic adsorption,the SP was automatically adsorbed onto the magneto-glass carbon electrode(MGCE),generating an amplified signal.This biosensor's detection limit(LOD)was 3.14 pmol/L,far below the limit of 10 nmol/L for mercury in drinking water set by the US EPA.The biosensor also showed excellent selectivity when challenged by interfering ions,and the results of its application in actual samples indicate that it has good potential for practical applications in environmental monitoring.