期刊文献+
共找到28,461篇文章
< 1 2 250 >
每页显示 20 50 100
Synergistic effects of expandable graphite and dimethyl methyl phosphonate on the mechanical properties, fire behavior, and thermal stability of a polyisocyanurate-polyurethane foam 被引量:14
1
作者 Hu Xiangming Wang Deming Wang Shuailing 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期13-20,共8页
In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) ... In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) (0-7% by weight). The effect of these additives on the properties of the PIR-PUR foams, including physico-mechanical, morphological, flame retardancy, and thermal stability, was studied. Increasing amounts of EG in the PIR-PUR foam caused a significant drop in the compression strength. However, DMMP caused the mechanical properties of PIR-PUR foam to improve compared to foam filled with EG alone. The flame retardancy of PIR-PUR foams containing both EG and DMMP was enhanced significantly compared to EG filled foams. Thermogravimetric analysis (TGA) indicated that EG enhances the thermal stability of PIR-PUR foams but that DMMP decreased it. The morphology of the residual char provided conclusive evidence for the weak thermal stability of foams filled with DMMP. 展开更多
关键词 expandable graphite Dimethyl methyl phosphonate Fire behavior Thermal stability PIR–PUR foam
下载PDF
Effect of dosage of expandable graphite,dimethyl methylphosphonate,triethanolamine,and isocyanate on fluidity,mechanical,and flame retardant properties of polyurethane materials in coal reinforcement 被引量:5
2
作者 Hu Xiangming Wang Deming Cheng Weimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期345-352,共8页
In this study,orthogonal experiments were conducted to investigate the influence of expandable graphite(EG),dimethyl methylphosphonate(DMMP),triethanolamine(TEA),and isocyanate content on the compressive and bonding s... In this study,orthogonal experiments were conducted to investigate the influence of expandable graphite(EG),dimethyl methylphosphonate(DMMP),triethanolamine(TEA),and isocyanate content on the compressive and bonding strengths,oxygen index,and fluidity of rigid polyurethane foam(RPUF).The results revealed that EG significantly increased the oxygen index of RPUF,enlarged the diameter of foam cells,and decreased the cell-closed content in foam;thus,leading to a pressure drop in RPUF.However,excessive EG was capable of reducing the fluidity of polyurethane slurry.TEA exhibited significant influence on the compressive strength of RPUF,which dropped initially,and then increased.DMMP had a remarkable effect on the flame retardant property and compressive strength of RPUF.Compressive strength of RPUF initially displayed an increase followed by a decrease with increasing dosage of DMMP,and achieved the maximum value at DMMP dosage of 4%.DMMP could effectively reduce the diameter of RPUF cells leading to an increase in the percentage of close area in foam.DMMP displayed the flame-retardation effects mainly in the gas phase leading to a significant enhancement in the oxygen index of RPUF.Moreover,the compressive strength and bonding strength of RPUF decrease significantly with the increase of isocyanate content due to the increased blowing efficiency by the CO_2.The oxygen index and flowing length of foam increased with the increase in isocyanate dosage. 展开更多
关键词 Rigid polyurethane foam expandable graphite Compressive strength Flame retardant Scanning electron microscopy(SEM) Microstructure
下载PDF
Poly(lactic acid)-starch/Expandable Graphite (PLA-starch/EG) Flame Retardant Composites 被引量:1
3
作者 Mfiso Emmanuel Mngomezulu Adriaan Stephanus Luyt +1 位作者 Steve Anthony Chapple Maya Jacob John 《Journal of Renewable Materials》 SCIE 2018年第1期26-37,共12页
This work reports on the effect of commercial expandable graphite(EG)on the flammability and thermal decomposition properties of PLA-starch blend.The PLA-starch/EG composites were prepared by melt-mixing and their the... This work reports on the effect of commercial expandable graphite(EG)on the flammability and thermal decomposition properties of PLA-starch blend.The PLA-starch/EG composites were prepared by melt-mixing and their thermal stability,volatile pyrolysis products and flammability characteristics were investigated.The char residues of the composites,after combustion in a cone calorimeter,were analyzed with environmental scanning electron microscopy(ESEM).The thermal decomposition stability of the composites improved in the presence of EG.However,the char content was less than expected as per the combination of the wt%EG added into PLA-starch and the%residue of PLA-starch.The flammability performance of the PLA-starch/EG composites improved,especially at 15 wt%EG content,due to a thick and strong worm-like char structure.The peak heat release rate(PHRR)improved by 74%,the total smoke production(TSP)by 40%and the specific extinction area(SEA)by 55%.The improvements are attributed to the ability of EG to exfoliate at increased temperatures during which time three effects occurred:(i)cooling due to an endothermic exfoliation process,(ii)dilution due to release of H2O,SO2 and CO2 gases,and (iii)formation of a protective intumescent char layer.However,the CO and CO2 yields were found to be unfavorably high due to the presence of EG. 展开更多
关键词 Poly(lactic acid)-starch composites expandable graphite thermal stability flammability properties
下载PDF
A NEW METHOD TO SYNTHESIZE EXPANDABLE GRAPHITE WITH LESS POLLUTION
4
作者 米国民 涂文懋 +1 位作者 陈汝翼 曾宪滨 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1994年第1期144-148,共5页
The paper deals with a new method to synthesize expand-able graphite with H2O2 as oxidizer. This method causes less environ ——mental pollution than the tradi——tional method using HNO3. Some, opti-mum technical con... The paper deals with a new method to synthesize expand-able graphite with H2O2 as oxidizer. This method causes less environ ——mental pollution than the tradi——tional method using HNO3. Some, opti-mum technical conditions have been given here. It is shorvn that traditional method for manufacturing expandable graphite with HNO3 as oxidizer can be replaced completely with H2O2 as an oxidizer. Expandable graphite made, in this way has the same characteristics as that made in traditional way, but the pollution of NO2 to air decreases greatly. 展开更多
关键词 I expandable graphite double oxygen water envi-ronmental pollution
下载PDF
A Novel Method for the Synthesis of Carboxylic Esters Catalyzed by Expandable Graphite
5
作者 Ying Qun ZHANG Chun WANG Gui Shen LI 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第1期17-19,共3页
Esterification reaction of carboxylic acid and alcohol has been carried out in excellent yield with expandable graphite as a catalyst.
关键词 expandable graphite esterification.
下载PDF
Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation 被引量:1
6
作者 Zhiheng Cheng Zhiling Luo +7 位作者 Hao Zhang Wuxing Zhang Wang Gao Yang Zhang Long Qie Yonggang Yao Yunhui Huang Kun Kelvin Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期91-103,共13页
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte... The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture. 展开更多
关键词 battery recycling spent graphite targeted regeneration upcycling graphite
下载PDF
Formation of NiFe_2O_4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties 被引量:7
7
作者 Yinglin Xiao Jiantao Zai +1 位作者 Bingbing Tian Xuefeng Qian 《Nano-Micro Letters》 SCIE EI CAS 2017年第3期101-108,共8页
A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-... A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 m Ah g^(-1)at a current of 1 A g^(-1)after 800 cycles. This good performance may beattributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure,efficiently accommodate volume changes in the Ni Fe_2O_4-based anodes, and alleviate aggregation of Ni Fe_2O_4 nanoparticles. 展开更多
关键词 NIFE2O4 expanded graphite Anode materials Lithium-ion batteries
下载PDF
Preparation of Expanded Graphite-based Composites by One Step Impregnation 被引量:4
8
作者 刘成宝 陈志刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期254-257,共4页
A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitroge... A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitrogen adsorption.The experimental results indicated that the EGCs was not simply mechanical mixture of EG and activated carbon,instead the activated carbon was coated on the surface of interior and external pores of the EG in the form of thin carbon layer.The thickness of the activated carbon layer was nearly one hundred nanometers by calculation.It was shown that the higher the impregnation ratio and the activation temperature were,the easier the porosity development would be.And the BET surface area and the total pore volume were as high as 1978 m2/g and 0.9917 cm3/g respectively at 350℃ with an impregnation ratio of 0.9. 展开更多
关键词 expanded graphite expanded graphite-based composites H3PO4 activation pore structure
下载PDF
Electrical Properties of Expanded Graphite Intercalation Compounds 被引量:2
9
作者 Xiuyun CHUAN Department of Geology, Peking University, Beijing 100871, China Daizhang CHEN and Xunruo ZHOU Department of Materials Science, China University of Geosciences, Beijing 100083, China E-mail: cxyljhcj@pku.edu.cn 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期371-374,共4页
The intercalation compounds of CuCl2 were synthesized with expanded graphite, whose magnitude of the electrical conductivity is about 10(3)S(.)cm(-1). Their electrical conductivity is 3 similar to6 times as high as th... The intercalation compounds of CuCl2 were synthesized with expanded graphite, whose magnitude of the electrical conductivity is about 10(3)S(.)cm(-1). Their electrical conductivity is 3 similar to6 times as high as that of the expanded graphite, and about 10 times as high as that of GIC made of the non-expanded graphite. The microanalysis results of chemical compounds by X-ray energy spectrum scanning of TEM testified that the atomic ratio of chloride and cupric is nonstoichoimetric. The multivalence and exchange of electrovalence of the cupric ion was confirmed by the XPS-ESCA. Vacancy of chlorine anion increases the concentration of charge carrier. The special stage structure, made of graphite and chloride, produces a weak chemical bond belt and provides a carrier space in the direction of GIC layer. These factors develop the electrical properties. 展开更多
关键词 In PH Electrical Properties of expanded graphite Intercalation Compounds graphite ESCA
下载PDF
A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability 被引量:2
10
作者 Xiaozhong Dong Hao Chen +4 位作者 Haiwen Lai Liyong Wang Jiaqing Wang Wenzhang Fang Chao Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期38-44,I0002,共8页
Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electro... Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electrolyte.Despite the low-cost expanded graphite-triethylaminehydrochloride(EG-ET)system has been improved in cycle performance,its rate capability still remains a gap with the expensive graphene-alkylimidazoliumchloride AIB system.In this work,we treated the cheap EG appropriately through an industrial high-temperature process,employed the obtained EG3K(treated at 3000℃)cathode with AlCl_(3)-ET electrolyte,and built a novel,high-rate capability and double-cheap AIB system.The new EG3K-ET system achieved the cathode capacity of average 110 m Ah g^(-1)at 1 A g^(-1)with 18,000cycles,and retained the cathode capacity of 100 m Ah g^(-1)at 5 A g^(-1)with 27,500 cycles(fast charging of 72 s).Impressively,we demonstrated that a battery pack(EG3K-ET system,12 m Ah)had successfully driven the Model car running 100 m long.In addition,it was confirmed that the improvement of rate capability in the EG3K-ET system was mainly derived by deposition,and its capacity contribution ratio was about 53.7%.This work further promoted the application potential of the low-cost EG-ET AIB system. 展开更多
关键词 Aluminum-ion battery expanded graphite Triethylamine hydrochloride
下载PDF
Mechanism of Fume Suppression and Performance on Asphalt of Expanded Graphite for Pavement under High Temperature Condition 被引量:5
11
作者 黄刚 何兆益 +2 位作者 HUANG Yangcheng ZHOU Chao YUAN Xiaoya 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1229-1236,共8页
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ... Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect. 展开更多
关键词 expanded graphite fume suppression mechanism adsorption insert oxidation composite modified asphalt of fume suppression performance
下载PDF
Insights on the mechanism of Na-ion storage in expanded graphite anode 被引量:1
12
作者 Xiaodan Li Zhibin Liu +7 位作者 Jinliang Li Hang Lei Wenchen Zhuo Wei Qin Xiang Cai Kwun Nam Hui Likun Pan Wenjie Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期56-62,I0003,共8页
Currently,Na-ion battery(NIB) has become one of the most potential alternatives for Li-ion batteries due to the safety and low cost.As a promising anode for Na-ion storage,expanded graphite has attracted considerable ... Currently,Na-ion battery(NIB) has become one of the most potential alternatives for Li-ion batteries due to the safety and low cost.As a promising anode for Na-ion storage,expanded graphite has attracted considerable attention.However,the sodiation-desodiation process is still unclear.In our work,we obtain expanded graphite through slight modified Hummer's method and subsequent thermal treatment,which exhibits excellent cycling stability.Even at a high current density of 1 A g^(-1),our expanded graphite still remains a high reversible capacity of 100 mA h g^(-1) after 2600 cycles.Furthermore,we also investigate the electrochemical mechanism of our expanded graphite for Na-ion storage by operando Raman technique,which illuminate the electrochemical reaction during different sodiation-desodiation processes. 展开更多
关键词 expanded graphite Sodiation-desodiation process Operando Raman spectroscopies Na-ion batteries
下载PDF
Preparation and Characterization of TiO_2/Expanded Graphite 被引量:1
13
作者 赖奇 朱世富 +3 位作者 刘国钦 邹敏 李玉峰 罗学萍 《Transactions of Tianjin University》 EI CAS 2010年第2期156-159,共4页
In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high temp... In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high tempera- ture. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy (EDS), and differential scanning calorimetry (DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1 : 0.4, and the calcination and expansion temperature is in the range of 650--750 ~C. Under such conditions, the expansion volume of composites could reach 98 mE/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume. 展开更多
关键词 expanded graphite titanium dioxide COMPOSITE PREPARATION
下载PDF
ZnO-Embedded Expanded Graphite Composite Anodes with Controlled Charge Storage Mechanism Enabling Operation of Lithium-Ion Batteries at Ultra-Low Temperatures 被引量:1
14
作者 Kun Ryu Michael J.Lee +1 位作者 Kyungbin Lee Seung Woo Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期31-39,共9页
As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered... As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation. 展开更多
关键词 diffusive and capacitive charge storages expanded graphite composites anode lithium-ion battery low-temperature operation transition metal oxide
下载PDF
Adsorption mechanism of expanded graphite for oil and dyes 被引量:1
15
作者 PANG Xiu-yan REN Hai-li +3 位作者 GONG Fei LV Pu YOU Ting-ting LIANG Xiu-hua 《Journal of Environmental Science and Engineering》 2008年第10期18-23,共6页
Expanded graphite (r-;G) shows higher adsorption capacity for oils than for dyes. To illustrate the different adsorption mechanism of EG for these pollutants, adsorption capacities of dyes and oil on EG were firs... Expanded graphite (r-;G) shows higher adsorption capacity for oils than for dyes. To illustrate the different adsorption mechanism of EG for these pollutants, adsorption capacities of dyes and oil on EG were firstly studied. And then stepwise adsorption for oils was carried out with EG which has been saturated firstly by dyes, the difference between adsorbance of oil on EG was checked with deviation analysis. Scanning electronic microscopy (SEM) analysis was used to show structure difference of EG adsorbed different adsorbates. These used adsorbates were SD300 oil, basic fuchsine, Auramine lake yellow O and acid brilliant red 3B. The adsorption isotherm of dyes on EG is type 11 or type 1, and their equilibrium adsorbances are less than 1.0 g/g. While, adsorbance for SD300 oil can reach 104.5 g/g. Deviation analysis for stepwise adsorbances of oil shows no statistical significance. EG saturated firstly by dyes, still has an average adsorption capacity of 35 g/g for SD300 oil, and it does not change with the initial dyes concentration. SEM photos illustrate the adsorption of oil on EG is mainly filling, In the adsorption of dyes, there is severe breakage of the V-type pore and shrinkage of the particle. Kinetic difference is analyzed also. 展开更多
关键词 expanded graphite stepwise adsorption dyes wastewater oil adsorption mechanism
下载PDF
Recycled graphite for more sustainable lithium-ion batteries
16
作者 Mayokun Olutogun Anna Vanderbruggen +5 位作者 Christoph Frey Martin Rudolph Dominic Bresser Stefano Passerini Helmholtz Institute Ulm(HIU) Ulm 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期15-24,共10页
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc... The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite. 展开更多
关键词 ANODE graphite lithium-ion battery RECYCLING SUSTAINABILITY
下载PDF
Spent graphite regeneration:Exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption
17
作者 Yu Dong Zihao Zeng +7 位作者 Zhengqiao Yuan Bing Wang Hai Lei Wenqing Zhao Wuyun Ai Lingchao Kong Yue Yang Peng Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期656-669,共14页
Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta... Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite. 展开更多
关键词 Spent graphite regeneration REPAIR Temperature treatment
下载PDF
Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface
18
作者 Xiaoyu Shi Chongxiao Guo +4 位作者 Jiamiao Ni Songsong Yao Liqiang Wang Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1858-1864,共7页
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine... The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications. 展开更多
关键词 titanium carbide graphite molten salt kinetic analysis
下载PDF
An efficient recycling strategy to eliminate the residual“impurities”while heal the damaged structure of spent graphite anodes
19
作者 Dan Yang Ying Yang +7 位作者 Haoran Du Yongsheng Ji Mingyuan Ma Yujun Pan Xiaoqun Qi Quan Sun Kaiyuan Shi Long Qie 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1027-1034,共8页
The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate ... The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate their useless components(mainly the degraded solid electrolyte interphase,SEI)and reconstruct their damaged structure.Herein,a facile and efficient strategy is proposed to recycle the spent graphite on the basis of the careful investigation of the composition of the cycled graphite anodes and the rational design of the regeneration processes.The regenerated graphite,which is revitalized by calcination treatment and acid leaching,delivers superb rate performance and a high specific capacity of 370 mAh g^(-1)(~99% of its theoretical capacity)after 100 cycles at 0.1 C,superior to the commercial graphite anodes.The improved electrochemical performance could be attributed to unchoked Li^(+) transport channels and enhanced charge transfer reaction due to the effective destruction of the degraded SEI and the full recovery of the damaged structure of the spent graphite.This work clarifies that the electrochemical performance of the regenerated graphite could be deteriorated by even a trace amount of the residual“impurity”and provides a facile method for the efficient regeneration of graphite anodes. 展开更多
关键词 graphite ANODE REGENERATION Solid electrolyte interphase Spent lithium-ion battery
下载PDF
Stable and reversible zinc metal anode with fluorinated graphite nanosheets surface coating
20
作者 Hong CHANG Zhen-ya LUO +2 位作者 Xue-ru SHI Xin-xin CAO Shu-quan LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3358-3371,共14页
A highly stable zinc metal anode modified with a fluorinated graphite nanosheets(FGNSs)coating was designed.The porous structure of the coating layer effectively hinders lateral mass transfer of Zn ions and suppresses... A highly stable zinc metal anode modified with a fluorinated graphite nanosheets(FGNSs)coating was designed.The porous structure of the coating layer effectively hinders lateral mass transfer of Zn ions and suppresses dendrite growth.Moreover,the high electronegativity exhibited by fluorine atoms creates an almost superhydrophobic solid-liquid interface,thereby reducing the interaction between solvent water and the zinc substrate.Consequently,this leads to a significant inhibition of hydrogen evolution corrosion and other side reactions.The modified anode demonstrates exceptional cycling stability,as symmetric cells exhibit sustained cycling for over 1400 h at a current density of 5 mA/cm^(2).Moreover,the full cells with NH_(4)V_(4)O_(10)cathode exhibit an impressive capacity retention rate of 92.2%after undergoing 1000 cycles. 展开更多
关键词 fluorinated graphite hydrophobic coating ANTI-CORROSION dendrite suppression zinc metal anode
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部