Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorize...In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.展开更多
Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,w...Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.展开更多
The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compres...The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compression tests to gain the energy absorbed during failure. Performance for impact resistance was tested by a self-made device. The results figures out that the EPS-C has good toughness and can reach swain of 0.7 without failure. The stress-strain curve is quite different from that of normal EPS concrete. It can be divided into three stages and in the third stage the compressing exhibits the highest energy absorption. With the rising of cement ratio, the impact force absorption (IEA) decreases first and then increases. The impact energy absorption (IEA) increases first and then decreases. The lowest IEA and the highest lEA appear at the cement dosage from 233 g/L to 267 g/L and from 233 g/L to 300 g/L, respectively.展开更多
Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,...Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.展开更多
To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopte...To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopted to improve its mechanical properties. The mechanical properties, thermal properties and durability of EPS lightweight concrete were tested. The microstruetures of EPS lightweight concrete were observed by scanning electron microscope (SEM). Vibration with pressure reduces the number of small cracks. The 180 d compressive strength and flexural strength increase obviously as a large amount of PVA was added. The mixed amount of PVA has no obvious influence on the thermal performance when it is not more than 10% of the cement. Vibration with pressure and surface modification of EPS beads by PVA improve the combination of EPS beads with cement stone and the mechanical properties of EPS lightweight concrete.展开更多
Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were ...Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were used to fit relationship between shear stress and shear displacement. The shear behavior is marginally associated with the EPS ratios and normal/confining stresses. Increases of EPS ratios and decreases of normal/confining stresses result in shear strength decreases. The shapes of Mohr-Coulomb's envelope include linear and piecewise linear types, which are basically determined by the EPS ratio. Such difference is thought related to the embedding or apparent cohesion effect under relatively high EPS ratio conditions. Shear strength parameters can be used for further modeling and design purposes.展开更多
Housing provision has become a global issue as the need for affordable housing kept increasing in various communities especially in Akure, Nigeria. This has emerged due to various economic, socio-cultural and environm...Housing provision has become a global issue as the need for affordable housing kept increasing in various communities especially in Akure, Nigeria. This has emerged due to various economic, socio-cultural and environmental factors which has increased pressure on conventional building materials thereby leading to the invention of alternative building materials. This paper looks at the barriers to the adoption of expanded polystyrene (EPS) for building construction in Akure, Nigeria. The methodology adopted elicited information through structured questionnaire which assessed the socio-economic characteristics of the respondents, their level of awareness of EPS and its application in building construction, the rate at which they specify EPS for designs and construction and the hindrances to its adoption for building construction. A total of 60 questionnaires were administered on the architects in practice and in the academia environment but 45 were retrieved. This was the bases to which the conclusion of this research was made. The outcome of the research shows that lack of awareness is a key hindrance to the adoption of EPS for construction as most architects in Akure do not know much about expanded polystyrene, thereby, cannot fully decipher its qualities and/or suitability for construction. As such, most questions pertaining the durability, cost implication or client’s preference could not be answered by the architects since their knowledge on the subject matter is minimal. However, those who knows about EPS confirms its flexibility, quick construction time and its environmental friendliness but stated that EPS is not readily available like other conventional materials. As such, their specification always goes towards the available materials.展开更多
In this paper, the evaluation of the mechanical and hygro-thermal properties of expanded polystyrene-sanded lightweight concrete (EPSLC) was examined. Evaluated are the mechanical properties in terms of density;and th...In this paper, the evaluation of the mechanical and hygro-thermal properties of expanded polystyrene-sanded lightweight concrete (EPSLC) was examined. Evaluated are the mechanical properties in terms of density;and the hygro-thermal property using water absorption (capillary absorption and total immersion) as measures. The research used 30% volume of EPS to replace natural coarse aggregate to produce a lightweight concrete, which is expected to be economical, serviceable and meet the required standards for lightweight concretes. The concrete bulk and oven dry densities were obtained as 1789 KN/m3 and 1674 kg/m3 respectively, while the total water and capillary water absorption increases with time of suction. The high rate of water absorption at the early periods of the test has corresponding capillary coefficient of steep slope within the same period. The relationship between the variables Q the water absorption per unit area of the specimen and K the capillary coefficient, is that as the water absorption gets higher, so does the capillary coefficient and the percentage of the variation is expressed by the correlation coefficient R2. Therefore, the values of R2 as depicted in the graphs shows a high percentage of variation. The moisture capacity is 6.9%. All the laboratory tests were, conducted in accordance with standard codes of practice. The significance of the research is that innovative technology is employed to modify and improve processes in construction industry, thus, enhancing sustainable environmental, management of industrial waste, and cheaper and economic construction. With the 30% replacement of coarse aggregate, the density and water absorption properties of concrete produced are within acceptable limits. Therefore, EPS can be used to produce lightweight concrete that will perform the required function at this level of replacement.展开更多
Feasibility of dissolution and utilization of expanded polystyrene in cycloalkane solutions was investigated in this work. The dissolution process of expanded polystyrene in several cycloalkane solutions decalin, cycl...Feasibility of dissolution and utilization of expanded polystyrene in cycloalkane solutions was investigated in this work. The dissolution process of expanded polystyrene in several cycloalkane solutions decalin, cyclohexane and methyl cyclohexane was studied. The effect of dissolution temperature, mechanical agitation, ultrasonic wave and stirring rate was studied under optimized conditions. Mass transfer coefficients were fitted. The results showed that the dissolution rate of expanded polystyrene in different cycloalkane solutions was ranked as decalin > methyl cyclohexane > cyclohexane;higher dissolution temperature and faster stirring rate could speed up the dissolution of expanded polystyrene;the effect of mechanical agitation was superior to ultrasonic condition;the solubility of top face was better than side face and under face.展开更多
The synthesis and characterization of a new nanocomposite material that was prepared from recycled expanded polystyrene (EPS) and titanium dioxide (TiO2) is reported here. The EPS was obtained from chemical reagent bo...The synthesis and characterization of a new nanocomposite material that was prepared from recycled expanded polystyrene (EPS) and titanium dioxide (TiO2) is reported here. The EPS was obtained from chemical reagent box insulation. To obtain the nanocomposite, these materials were dispersed in a solvent, mixed with TiCl4 and heated. The resulting new material was characterized with SEM, TEM, TGA, BET, Raman and IR techniques. The Raman and IR spectra provided complementary information regarding the structure of the nanocomposite. The Raman spectra were used to identify the crystalline structure of TiO2 in the nanocomposite. In contrast, the IR spectra were used to identify the organic portion of the nanocomposite. The TEM images indicated that the nanocomposites had an average particle size of 6 - 12 nm. In addition, the adsorption and photocatalytic properties of the new material were evaluated. The EPS/TiO2 nanocomposite was efficient at degrading methylene blue (MB) dye solutions under UV irradiation. Furthermore, according to thermal analysis, this material had greater polymer stability due to the incorporation of TiO2.展开更多
Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">p...Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">pollution</span></span><span><span style="font-family:Verdana;"> is the proliferation of plastic waste. Among these </span><span style="font-family:Verdana;">wastes</span><span style="font-family:Verdana;"> there is expanded </span></span><span style="font-family:Verdana;">polystyrene (EPS), mainly from </span><span style="font-family:Verdana;">packaging</span><span style="font-family:Verdana;">. This study aims to valorize EPS waste by developing a composite material from EPS waste and wood waste. For this purpose, a resin made of EPS has been elaborated by dissolving EPS in acetone. That resin was used as a binder in volume proportions of 15%, 20%, 25% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 30% to stabilize the samples. Some of them were thermoformed. The method of elaboration was based on a device consisting of an extruder for mixing the constituents, and a manual press for shaping and compacting the samples. Analyses show that the drying time depends on the composition of the mixture. Increasing the resin content leads to reduce water absorption and porosity of the samples;it also contributes to homogenize the internal structure of the samples. However, for the same resin contents, the thermoformed samples are less porous;they have </span><span style="font-family:Verdana;">more</span><span style="font-family:Verdana;"> homogeneous internal structure</span><span style="font-family:Verdana;">;and</span><span style="font-family:Verdana;"> absorb less water than non-thermoformed samples.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their hig...<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their high flammability. This work aims to study the impact of the addition of mineral filler (clay) on the fire behaviour of wood-polystyrene composites and their mechanical properties. Thus, composites containing 25% of expanded polystyrene binder have been produced. On this base material, proportions of clay ranging from 0% to 15% were gradually added. These samples were elaborated by compaction and for some them, submitted to thermoforming after drying. Both kinds of sample were subjected to flame persistence test;flexural strength and compressive strength test were also measured. The results show that composites without mineral filler ignite continuously until the total consumption and when the mineral filler content increases the combustion time decreases. The addition of the mineral filler allows these composites to pass from class M3 of moderately flammable combustible materials to class M2 of hardly flammable materials, according to the M classification of construction and furnishing materials. The measurement of the mechanical properties shows that the strengths increase when the filler content goes from 0% to 10% and then decrease. This leads to set the optimum content of mineral filler around 10%.</span> </div>展开更多
Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufac...Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufacturing method that involves dissolving the polystyrene in a solvent followed by cold pressing. Various particle sizes and two binder dosages were investigated to assess their influence on the physico-mechanical properties of the composites. The mechanical properties obtained range from 2.54 to 4.47 MPa for the Modulus of Rupture (MOR) and from 686 to 1400 MPa for the Modulus of Elasticity in Bending (MOE). The results indicate that these composites have potential for applications in the construction sector, particularly for wood structures and interior decoration. Moreover, surface treatments could enhance their durability and mechanical properties. This research contributes to the valorization of agricultural and plastic waste as eco-friendly and economical construction materials.展开更多
To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a nov...To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation.展开更多
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
文摘In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.
基金Project(2012JQ7013)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(QN2012025)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011BSJJ084)supported by Research Foundation of Northwest A&F University,China
文摘Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.
基金Funded by the Kwang-Hua Fund for College of Civil Engineering,Tongji Universitythe National Natural Science Fundation of China(No.41002093)the National Science and Technology Support Project of China(No.2012BAK24B04)
文摘The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compression tests to gain the energy absorbed during failure. Performance for impact resistance was tested by a self-made device. The results figures out that the EPS-C has good toughness and can reach swain of 0.7 without failure. The stress-strain curve is quite different from that of normal EPS concrete. It can be divided into three stages and in the third stage the compressing exhibits the highest energy absorption. With the rising of cement ratio, the impact force absorption (IEA) decreases first and then increases. The impact energy absorption (IEA) increases first and then decreases. The lowest IEA and the highest lEA appear at the cement dosage from 233 g/L to 267 g/L and from 233 g/L to 300 g/L, respectively.
基金Funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20050487017)
文摘Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.
基金Supported by Tianjin Natural Science Foundation (No.06YFJMJC05900)Science and Technology Key Project of Hebei Province (No.05213810)
文摘To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopted to improve its mechanical properties. The mechanical properties, thermal properties and durability of EPS lightweight concrete were tested. The microstruetures of EPS lightweight concrete were observed by scanning electron microscope (SEM). Vibration with pressure reduces the number of small cracks. The 180 d compressive strength and flexural strength increase obviously as a large amount of PVA was added. The mixed amount of PVA has no obvious influence on the thermal performance when it is not more than 10% of the cement. Vibration with pressure and surface modification of EPS beads by PVA improve the combination of EPS beads with cement stone and the mechanical properties of EPS lightweight concrete.
基金Project(50708031) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, SEM
文摘Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were used to fit relationship between shear stress and shear displacement. The shear behavior is marginally associated with the EPS ratios and normal/confining stresses. Increases of EPS ratios and decreases of normal/confining stresses result in shear strength decreases. The shapes of Mohr-Coulomb's envelope include linear and piecewise linear types, which are basically determined by the EPS ratio. Such difference is thought related to the embedding or apparent cohesion effect under relatively high EPS ratio conditions. Shear strength parameters can be used for further modeling and design purposes.
文摘Housing provision has become a global issue as the need for affordable housing kept increasing in various communities especially in Akure, Nigeria. This has emerged due to various economic, socio-cultural and environmental factors which has increased pressure on conventional building materials thereby leading to the invention of alternative building materials. This paper looks at the barriers to the adoption of expanded polystyrene (EPS) for building construction in Akure, Nigeria. The methodology adopted elicited information through structured questionnaire which assessed the socio-economic characteristics of the respondents, their level of awareness of EPS and its application in building construction, the rate at which they specify EPS for designs and construction and the hindrances to its adoption for building construction. A total of 60 questionnaires were administered on the architects in practice and in the academia environment but 45 were retrieved. This was the bases to which the conclusion of this research was made. The outcome of the research shows that lack of awareness is a key hindrance to the adoption of EPS for construction as most architects in Akure do not know much about expanded polystyrene, thereby, cannot fully decipher its qualities and/or suitability for construction. As such, most questions pertaining the durability, cost implication or client’s preference could not be answered by the architects since their knowledge on the subject matter is minimal. However, those who knows about EPS confirms its flexibility, quick construction time and its environmental friendliness but stated that EPS is not readily available like other conventional materials. As such, their specification always goes towards the available materials.
文摘In this paper, the evaluation of the mechanical and hygro-thermal properties of expanded polystyrene-sanded lightweight concrete (EPSLC) was examined. Evaluated are the mechanical properties in terms of density;and the hygro-thermal property using water absorption (capillary absorption and total immersion) as measures. The research used 30% volume of EPS to replace natural coarse aggregate to produce a lightweight concrete, which is expected to be economical, serviceable and meet the required standards for lightweight concretes. The concrete bulk and oven dry densities were obtained as 1789 KN/m3 and 1674 kg/m3 respectively, while the total water and capillary water absorption increases with time of suction. The high rate of water absorption at the early periods of the test has corresponding capillary coefficient of steep slope within the same period. The relationship between the variables Q the water absorption per unit area of the specimen and K the capillary coefficient, is that as the water absorption gets higher, so does the capillary coefficient and the percentage of the variation is expressed by the correlation coefficient R2. Therefore, the values of R2 as depicted in the graphs shows a high percentage of variation. The moisture capacity is 6.9%. All the laboratory tests were, conducted in accordance with standard codes of practice. The significance of the research is that innovative technology is employed to modify and improve processes in construction industry, thus, enhancing sustainable environmental, management of industrial waste, and cheaper and economic construction. With the 30% replacement of coarse aggregate, the density and water absorption properties of concrete produced are within acceptable limits. Therefore, EPS can be used to produce lightweight concrete that will perform the required function at this level of replacement.
文摘Feasibility of dissolution and utilization of expanded polystyrene in cycloalkane solutions was investigated in this work. The dissolution process of expanded polystyrene in several cycloalkane solutions decalin, cyclohexane and methyl cyclohexane was studied. The effect of dissolution temperature, mechanical agitation, ultrasonic wave and stirring rate was studied under optimized conditions. Mass transfer coefficients were fitted. The results showed that the dissolution rate of expanded polystyrene in different cycloalkane solutions was ranked as decalin > methyl cyclohexane > cyclohexane;higher dissolution temperature and faster stirring rate could speed up the dissolution of expanded polystyrene;the effect of mechanical agitation was superior to ultrasonic condition;the solubility of top face was better than side face and under face.
文摘The synthesis and characterization of a new nanocomposite material that was prepared from recycled expanded polystyrene (EPS) and titanium dioxide (TiO2) is reported here. The EPS was obtained from chemical reagent box insulation. To obtain the nanocomposite, these materials were dispersed in a solvent, mixed with TiCl4 and heated. The resulting new material was characterized with SEM, TEM, TGA, BET, Raman and IR techniques. The Raman and IR spectra provided complementary information regarding the structure of the nanocomposite. The Raman spectra were used to identify the crystalline structure of TiO2 in the nanocomposite. In contrast, the IR spectra were used to identify the organic portion of the nanocomposite. The TEM images indicated that the nanocomposites had an average particle size of 6 - 12 nm. In addition, the adsorption and photocatalytic properties of the new material were evaluated. The EPS/TiO2 nanocomposite was efficient at degrading methylene blue (MB) dye solutions under UV irradiation. Furthermore, according to thermal analysis, this material had greater polymer stability due to the incorporation of TiO2.
文摘Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">pollution</span></span><span><span style="font-family:Verdana;"> is the proliferation of plastic waste. Among these </span><span style="font-family:Verdana;">wastes</span><span style="font-family:Verdana;"> there is expanded </span></span><span style="font-family:Verdana;">polystyrene (EPS), mainly from </span><span style="font-family:Verdana;">packaging</span><span style="font-family:Verdana;">. This study aims to valorize EPS waste by developing a composite material from EPS waste and wood waste. For this purpose, a resin made of EPS has been elaborated by dissolving EPS in acetone. That resin was used as a binder in volume proportions of 15%, 20%, 25% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 30% to stabilize the samples. Some of them were thermoformed. The method of elaboration was based on a device consisting of an extruder for mixing the constituents, and a manual press for shaping and compacting the samples. Analyses show that the drying time depends on the composition of the mixture. Increasing the resin content leads to reduce water absorption and porosity of the samples;it also contributes to homogenize the internal structure of the samples. However, for the same resin contents, the thermoformed samples are less porous;they have </span><span style="font-family:Verdana;">more</span><span style="font-family:Verdana;"> homogeneous internal structure</span><span style="font-family:Verdana;">;and</span><span style="font-family:Verdana;"> absorb less water than non-thermoformed samples.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their high flammability. This work aims to study the impact of the addition of mineral filler (clay) on the fire behaviour of wood-polystyrene composites and their mechanical properties. Thus, composites containing 25% of expanded polystyrene binder have been produced. On this base material, proportions of clay ranging from 0% to 15% were gradually added. These samples were elaborated by compaction and for some them, submitted to thermoforming after drying. Both kinds of sample were subjected to flame persistence test;flexural strength and compressive strength test were also measured. The results show that composites without mineral filler ignite continuously until the total consumption and when the mineral filler content increases the combustion time decreases. The addition of the mineral filler allows these composites to pass from class M3 of moderately flammable combustible materials to class M2 of hardly flammable materials, according to the M classification of construction and furnishing materials. The measurement of the mechanical properties shows that the strengths increase when the filler content goes from 0% to 10% and then decrease. This leads to set the optimum content of mineral filler around 10%.</span> </div>
文摘Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufacturing method that involves dissolving the polystyrene in a solvent followed by cold pressing. Various particle sizes and two binder dosages were investigated to assess their influence on the physico-mechanical properties of the composites. The mechanical properties obtained range from 2.54 to 4.47 MPa for the Modulus of Rupture (MOR) and from 686 to 1400 MPa for the Modulus of Elasticity in Bending (MOE). The results indicate that these composites have potential for applications in the construction sector, particularly for wood structures and interior decoration. Moreover, surface treatments could enhance their durability and mechanical properties. This research contributes to the valorization of agricultural and plastic waste as eco-friendly and economical construction materials.
基金financially supported by the National Natural Science Foundation of China(51827803,51320105011,51790504,and 51721091)the Young Elite Scientists Sponsorship Program by CASTFundamental Research Funds for the Central Universities。
文摘To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation.